精英家教网 > 高中数学 > 题目详情
2.已知A是△ABC的一个内角,sinA+cosA=$\frac{1}{5}$,则sinAcosA=-$\frac{12}{25}$,tanA=-$\frac{4}{3}$.

分析 把条件sinA+cosA=$\frac{1}{5}$,平方可得sinAcosA的值,A为钝角,且 tanA<-1.再利用同角三角函数的基本关系求得tanA的值.

解答 解:∵A是△ABC的一个内角,sinA+cosA=$\frac{1}{5}$,平方可得 1+2sinAcosA=$\frac{1}{25}$,
∴sinAcosA=-$\frac{12}{25}$,∴A为钝角,且sinA>|cosA|,∴tanA<-1.
再根据sinAcosA=$\frac{sinAcosA}{{sin}^{2}A{+cos}^{2}A}$=$\frac{tanA}{{tan}^{2}A+1}$=-$\frac{12}{25}$,∴tanA=-$\frac{3}{4}$(舍去),或 tanA=-$\frac{4}{3}$,
故答案为:-$\frac{12}{25}$;-$\frac{4}{3}$.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.计算:(1)0.2-20+($\frac{1}{27}$${\;}^{-\frac{1}{3}}$);
(2)log3.19.61+lg$\frac{1}{1000}$+ln(e2•$\root{3}{e}$)+log3(log327)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算:${3^{{{log}_3}4}}$-${27^{\frac{2}{3}}}$+lg0.01+(0.75)-1+ln$\frac{1}{e}$=-$\frac{20}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆的两个焦点分别是点F1 (-1,0),F2 (1,0),P为椭圆上一点,且F1F2是PF1和PF2的等差中项,则该椭圆方程是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=f(x)定义在R上的奇函数,且当x≥0时,f(x)=x2-3x+b,则f(-2)=(  )
A.-2B.2C.10D.-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=log${\;}_{\frac{1}{2}}$(x2-ax+b).
(Ⅰ) 若函数f(x)的定义域为(-∞,2)∪(3,+∞),求实数a,b的值;
(Ⅱ)  若f(-2)=-3且f(x)在(-∞,-1]上为增函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足$\left\{{\begin{array}{l}{x-2y≤0}\\{x+y-5≤0}\\{3x+y-7≥0}\end{array}}\right.$,若u=$\frac{y}{x}$,则u+$\frac{1}{u}$的最大值是$\frac{17}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$=(2$\sqrt{3}$sinωx,2sinωx),$\overrightarrow b$=(cosωx,sinωx),0<ω<2,函数f(x)=$\overrightarrow a$•$\overrightarrow b$+t(t为常数)的一条对称轴方程为x=$\frac{π}{3}$,且与y轴交于(0,-1).
(1)求f(x)解析式;
(2)若锐角α,β满足f($\frac{α+β}{2}$+$\frac{π}{12}$)=$\frac{{5\sqrt{3}}}{7}$,f($\frac{α}{2}$+$\frac{π}{3}$)=$\frac{2}{7}$,求sinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.赣榆区自行车主题景观大道引进50辆自行车供游客租赁使用,管理这些自行车的费用是每日125元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金2x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?

查看答案和解析>>

同步练习册答案