精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)在R上是奇函数,而且在(0,+∞)是增函数.证明:
(1)f(0)=0;
(2)y=f(x)在(-∞,0)上也是增函数.
【答案】分析:(1)根据奇函数性质列出关系式,将x=0代入即可求出f(0)的值;
(2)任取x1<x2<0,则-x1>-x2>0,根据f(x)在(0,+∞)是增函数列出关系式,再利用奇函数的性质化简,得到f(x1)<f(x2),即可得证.
解答:证明:(1)∵f(x) 在R上是奇函数,
∴f(-x)=-f(x),
∴f(-0)=-f(0),
∴f(0)=0;
(2)任取x1<x2<0,则-x1>-x2>0,
∵f(x)在(0,+∞)上是增函数,
∴f(-x1)>f(-x2),
又f(x)在R上是奇函数,
∴-f(x1)>-f(x2),即f(x1)<f(x2),
∴函数y=f(x)在(0,+∞)上是增函数.
点评:此题考查了诱导公式的作用,函数单调性的判断与证明,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案