【题目】如图,在平面直角坐标系xOy中,已知焦点在x轴上,离心率为的椭圆E的左顶点为A,点A到右准线的距离为6.
(1)求椭圆E的标准方程;
(2)过点A且斜率为的直线与椭圆E交于点B,过点B与右焦点F的直线交椭圆E于M点,求M点的坐标.
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各级城市的大街小巷,为了解我市的市民对共享单车的满意度,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了人进行分析.若得分低于分,说明不满意,若得分不低于分,说明满意,调查满意度得分情况结果用茎叶图表示如图1.
(Ⅰ)根据茎叶图完成下面列联表,并根据以上数据,判断是否有的把握认为满意度与年龄有关;
满意 | 不满意 | 合计 | |
岁以下 | |||
岁以上 | |||
合计 |
(Ⅱ)先采用分层抽样的方法从岁及以下的网友中选取人,再从这人中随机选出人,将频率视为概率,求选出的人中至少有人是不满意的概率.
(Ⅲ)将频率视为概率,从参与调查的岁以上的网友中,随机选取人,记其中满意度为满意的人数为,求的分布列和数学期望.
参考格式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点P(2,1).
(1)求椭圆C的方程,并求其离心率;
(2)过点P作x轴的垂线l,设点A为第四象限内一点且在椭圆C上(点A不在直线l上),点A关于l的对称点为A',直线A'P与C交于另一点B.设O为原点,判断直线AB与直线OP的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.
(1)求乙至多击目标2次的概率;
(2)记甲击中目标的次数为,求的概率分布列及数学期望;
(3)求甲恰好比乙多击中目标2次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,已知底面ABCD是边长为1的正方形,侧面PAD⊥平面ABCD,PA=PD,PA与平面PBC所成角的正弦值为。
(1)求侧棱PA的长;
(2)设E为AB中点,若PA≥AB,求二面角B-PC-E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于任意,仍为数列中的项,则称数列为“回归数列”.
(1)己知(),判断数列是否为“回归数列”,并说明理由;
(2)若数列为“回归数列”,,,且对于任意,均有成立.①求数列的通项公式;②求所有的正整数s,t,使得等式成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个六边形点阵,它的中心是1个点(第1层),第2层每边有2个点, 第3层每边有3个点,…,依此类推,若一个六边形点阵共有217个点,那么它的层数为( )
A.10B.9C.8D.7
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】研究变量,得到一组样本数据,进行回归分析,有以下结论
①残差平方和越小的模型,拟合的效果越好;
②用相关指数来刻画回归效果,越小说明拟合效果越好;
③在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位
④若变量和之间的相关系数为,则变量和之间的负相关很强,以上正确说法的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)若,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com