精英家教网 > 高中数学 > 题目详情
已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(Ⅰ)求数列{an}、{bn}的通项公式an、bn
(Ⅱ)设cn=
anbn
,求数列{cn}的前n项和Sn
分析:(Ⅰ)设d、q分别为数列{an}、{bn}的公差与公比.由a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2+d,4+2d是等比数列{bn}的前三项,可得关于d的方程,解出d,可得an,进而可得b1,b2,公比q,故可得bn
(Ⅱ)由(Ⅰ)表示出cn,利用错位相减法可求得Sn
解答:解(Ⅰ)设d、q分别为数列{an}、{bn}的公差与公比.
由题意知,a1=1,a2=1+d,a3=1+2d,分别加上1,1,3后得2,2+d,4+2d是等比数列{bn}的前三项,
∴(2+d)2=2(4+2 d),解得:d=±2.
又∵an+1>an,∴d>0,∴d=2,
an=2n-1(n∈N*)
由此可得b1=2,b2=4,q=2,
bn=2n(n∈N*)
(Ⅱ)由(Ⅰ)可得cn=
an
bn
=
2n-1
2n

Sn=
a1
b1
+
a2
b2
+…+
an
bn
=
1
2
+
3
22
+
5
23
+…+
2n-1
2n

1
2
Sn=
1
22
+
3
23
+
5
24
+…+
2n-1
2n+1
②,
①-②,得
1
2
Sn=
1
2
+(
1
2
+
1
22
+…+
1
2n-1
)
-
2n-1
2n+1

=
1
2
+
1
2
(1-
1
2n-1
)
1-
1
2
-
2n-1
2n+1
=
3
2
-
1
2n-1
-
2n-1
2n+1

∴Sn=3-
2n+3
2n
点评:本题考查等差数列等比数列的通项公式、数列的求和,考查学生的运算求解能力,错位相减法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案