分析 (1)利用三角形内角和定理及诱导公式可得-cos2C=$\frac{1}{4}$,由倍角公式化简即可求得cosC的值.
(2)由已知及由正弦定理可得c,由余弦定理c2=a2+b2-2abcosC,即可解得b的值.
解答 解:(1)∵cos(A+B-C)=cos[(π-C)-C]=cos(π-2C)=-cos2C=$\frac{1}{4}$,
∴解得:cos2C=2cos2C-1=-$\frac{1}{4}$,解得:cos2C=$\frac{3}{8}$,由C角为钝角,解得:cosC=-$\frac{\sqrt{6}}{4}$.
(2)∵$\frac{{sin({B+A})}}{sinA}$=2,a=2,
∴可得sinC=2sinA,由正弦定理可得:c=2a=4,
∴由余弦定理c2=a2+b2-2abcosC,可得:16=4+b2-2×$2×b×(-\frac{\sqrt{6}}{4})$,解得:b=$\sqrt{6}$.
点评 本题主要考查了三角形内角和定理,诱导公式,倍角公式,正弦定理,余弦定理的应用,熟练掌握公式是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-3)∪(0,3) | B. | (-3,0)∪(0,3) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,0)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | d<0 | B. | S11>0 | ||
| C. | {Sn}中的最大项为S11 | D. | |a6|>|a7| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | -3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com