精英家教网 > 高中数学 > 题目详情
16.在△ABC中,角A,B,C所对的边分别为a,b,c,其中C角为钝角.cos(A+B-C)=$\frac{1}{4}$,a=2,$\frac{{sin({B+A})}}{sinA}$=2.
(1)求cosC的值;
(2)求b的长.

分析 (1)利用三角形内角和定理及诱导公式可得-cos2C=$\frac{1}{4}$,由倍角公式化简即可求得cosC的值.
(2)由已知及由正弦定理可得c,由余弦定理c2=a2+b2-2abcosC,即可解得b的值.

解答 解:(1)∵cos(A+B-C)=cos[(π-C)-C]=cos(π-2C)=-cos2C=$\frac{1}{4}$,
∴解得:cos2C=2cos2C-1=-$\frac{1}{4}$,解得:cos2C=$\frac{3}{8}$,由C角为钝角,解得:cosC=-$\frac{\sqrt{6}}{4}$.
(2)∵$\frac{{sin({B+A})}}{sinA}$=2,a=2,
∴可得sinC=2sinA,由正弦定理可得:c=2a=4,
∴由余弦定理c2=a2+b2-2abcosC,可得:16=4+b2-2×$2×b×(-\frac{\sqrt{6}}{4})$,解得:b=$\sqrt{6}$.

点评 本题主要考查了三角形内角和定理,诱导公式,倍角公式,正弦定理,余弦定理的应用,熟练掌握公式是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{3}sinωxcosωx+{cos^2}ωx-\frac{3}{2}$(ω>0),其最小正周期为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将图象上个点横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间$[{\left.{0,\frac{π}{2}}]}$上有且只有两个实数解,求实数k的取值范围.
(3)若不等式$|{f(x)-m}|<1在x∈[{\left.{0,\frac{π}{4}}]}$上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)、g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)-f(x)g′(x)>0且g(-3)=0.则不等式f(x)g(x)<0的解集是(  )
A.(-∞,-3)∪(0,3)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-3,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式组$\left\{{\begin{array}{l}{3x-y-3≥0}\\{x-2y-1≤0}\\{2x+y-7≤0}\end{array}}\right.$表示的区域为D,
(1)在坐标系中作出区域D(用阴影部分表示);
(2)若在可行域D内,使目标函数z=kx-y的取得最小值的最优解有无数个,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等差数列{an}的公差为d,前n项和为Sn,若S6>S7>S5,则下列命题错误的是(  )
A.d<0B.S11>0
C.{Sn}中的最大项为S11D.|a6|>|a7|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等差数列{an}的前n项和为Sn,且满足S3=6,S6=3.则S9=-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(0,2$\sqrt{3}$),b=(1,$\sqrt{3}$),则向量$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.3B.$\sqrt{3}$C.-$\sqrt{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设$f(x)=\frac{sinx}{x}$,则$f'(\frac{π}{2})$=$-\frac{4}{π^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求使不等式 $\sqrt{(x-2)({x}^{2}一4)}$=(2一x)$\sqrt{x+2}$成立的x的取值范围.

查看答案和解析>>

同步练习册答案