剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即ξ可以取1,2,3.
解:随机变量ξ的可能取值为1,2,3.
当ξ=1时,即取出的三只球中最小号码为1,则其他两只球只能在编号为2,3,4,5的四只球中任取两只,故有P(ξ=1)===;
当ξ=2时,即取出的三只球中最小号码为2,则其他两只球只能在编号为3,4,5的三只球中任取两只,故有P(ξ=2)==;
当ξ=3时,即取出的三只球中最小号码为3,则其他两只球只能在编号为4,5的两只球中任取两只,故有P(ξ=3)==.
因此,ξ的分布列如下表所示:
ξ | 1 | 2 | 3 |
P |
讲评:求随机变量的分布列,重要的基础是概率的计算,如古典概率、互斥事件的概率、相互独立事件同时发生的概率、n次独立重复试验有k次发生的概率等.本题中基本事件总数,即n=C35,取每一个球的概率都属古典概率(等可能性事件的概率).
科目:高中数学 来源:2006年高考第一轮复习数学:12.1 离散型随机变量的分布列(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com