精英家教网 > 高中数学 > 题目详情
(2012•安徽模拟)已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(I)求证:EF⊥平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小.
分析:(I)先根据平面PAD⊥平面ABCD,AB⊥AD得到AB⊥平面PAD;再结合EF∥AB,即可得到EF⊥平面PAD;
(II)过P作AD的垂线,垂足为O,根据平面PAD⊥平面ABCD,得PO⊥平面ABCD;再取AO中点M,连OG得到OG即为面EFG与面ABCD的交线;最后根据EM⊥平面ABCD.且OG⊥AO,得到的OG⊥EO求出∠EOM 即可.
解答:解:(I)证明:∵平面PAD⊥平面ABCD,AB⊥AD,
∴AB⊥平面PAD,(4分)
∵E、F为PA、PB的中点,
∴EF∥AB,
∴EF⊥平面PAD;                        (6分)
(II)解:过P作AD的垂线,垂足为O,
∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.
取AO中点M,连OG,EO,EM,
∵EF∥AB∥OG,
∴OG即为面EFG与面ABCD的交线(8分)
又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,
故OG⊥EO
∴∠EOM 即为所求       (11分)
在RT△EOM中,EM=
3
OM=1
∴tan∠EOM=
3
,故∠EOM=60°
∴平面EFG与平面ABCD所成锐二面角的大小是60°.(14分)
点评:本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)在复平面内,复数z=
1+i
i-2
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)定义在R上的奇函数f(x)满足:x≤0时f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,则f(2)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)(理)若变量x,y满足约束条件
x+y-3≤0
x-y+1≥0
y≥1
,则z=|y-2x|的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)下列说法不正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及当取最大值时x的取值集合.
(2)在三角形ABC中,a,b,c分别是角A,B,C所对的边,对定义域内任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步练习册答案