精英家教网 > 高中数学 > 题目详情
12、f(x)是定义在R上的偶函数,当x<0时,f(x)+x•f'(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为(  )
分析:由题意构造函数g(x)=xf (x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(-4)=0得g(4)=0、还有g(-4)=0,再通过奇偶性进行转化,利用单调性求出不等式得解集.
解答:解:设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)<0,
∴函数g(x)在区间(-∞,0)上是减函数,
∵f(x)是定义在R上的偶函数,
∴g(x)=xf(x)是R上的奇函数,
∴函数g(x)在区间(0,+∞)上是减函数,
∵f(-4)=0,
∴f(4)=0;
即g(4)=0,g(-4)=0
∴xf(x)>0化为g(x)>0,
设x>0,故不等式为g(x)>g(4),即0<x<4
设x<0,故不等式为g(x)>g(-4),即x<-4
故所求的解集为(-∞,-4)∪(0,4)
故选D.
点评:本题考查了由条件构造函数和用导函数的符号判断函数的单调性,利用函数的单调性和奇偶性的关系对不等式进行转化,注意函数值为零的自变量的取值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且x≥0时,f(x)=(
1
2
x,函数f(x)的值域为集合A.
(Ⅰ)求f(-1)的值;
(Ⅱ)设函数g(x)=
-x2+(a-1)x+a
的定义域为集合B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,对任意实数m、n,都有f(m)•f(n)=f(m+n),且当x<0时,f(x)>1.
(1)证明:①f(0)=1;②当x>0时,0<f(x)<1;③f(x)是R上的减函数;
(2)设a∈R,试解关于x的不等式f(x2-3ax+1)•f(-3x+6a+1)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,满足f(x+2)=f(x),当x∈(-2,0)时,f(x)=2x-2,则f(-3)的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的函数,且对任意实数x,恒有f(x+2)=-3f(x).当x∈[0,2]时,f(x)=2x-x2.则f(0)+f(-1)+f(-1)+…+f(-2014)=(  )
A、-
3
4
(1-31007
B、-
3
4
(1+31007
C、-
1
4
(1-
1
31007
D、-
1
4
(1+
1
31007

查看答案和解析>>

同步练习册答案