分析:(1)先根据AC=3,BC=4,AB=5得到AC⊥BC;再结合其为直棱柱得到AC⊥CC1,即可证明AC⊥平面BCC1B1,进而得到AC⊥BC1;
(2)先设CB1与C1B的交点为E,连接DE;跟怒边长相等得到E为正方形对角线的交点,E为中点;再结合点D是AB的中点可得DE∥AC1,进而得到AC1∥平面CDB1;
(3)直接根据等体积转化,把问题转化为求三棱锥D-C1CB1的体积再代入体积计算公式即可.
解答:解:(1)直三棱柱ABC-A
1B
1C
1,
底面三边长AC=3,BC=4,AB=5,
∴AB
2=AC
2+BC
2,
∴AC⊥BC.
∵CC
1⊥平面ABC,AC?平面ABC,
∴AC⊥CC
1,又BC∩CC
1=C.
∴AC⊥平面BCC
1B
1,BC
1?平面B
1C
1CB,
∴AC⊥BC
1…(5分)
(2)设CB
1与C
1B的交点为E,连接DE,
因为;BC=AA
1=4,
所以BCC
1B
1为正方形,
故E是C
1B的中点,
∵D是AB的中点,E是C
1B的中点,
∴DE∥AC
1,
∵DE?平面CDB
1,AC
1?平面CDB
1,
∴AC
1∥平面CDB
1.. …(10分)
(3)因为AC⊥平面BCC
1B
1,,D为中点
所以D到平面BCC
1B
1的距离等于
AC,
∵
VC1-CDB 1=
VD-B 1C 1C =
S△B 1C 1C •AC
=
×(
×4×4)×
×3
=4.…(14分)
点评:本题是对立体几何知识的综合考查.一般在求三棱锥的体积直接不好找时,常用等体积转化求解.(转化为高好找的三棱锥)