精英家教网 > 高中数学 > 题目详情
等差数列{an}的公差为d,a3=-12,a3,a7,a10成等比数列且公比为q,则
dq
d+q
=
0或
3
8
0或
3
8
分析:根据a1,a3,a7为等比数列的连续三项,利用等比中项的式子可得a32=a1a7,从而可得关于公差d的一元二次方程,可求公差,进而得到公比,故可求.
解答:解:由题意,∵a3=-12,a3,a7,a10成等比数列
∴(-12+4d)2=-12×(-12+7d)
d=0或d=
3
4

当d=0 时,公比q=1,
dq
d+q
=0

d=
3
4
时,公比q=
3
4
dq
d+q
=
3
8

故答案为:0或
3
8
点评:本题着重考查了等差数列和等比数列的通项公式,属于中档题.熟练掌握等差数列和等比数列的通项公式,是解决本小题的关键所在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列{an}是公方差为p的等方差数列,求an和an-1(n≥2,n∈N)的关系式;
(2)若数列{an}既是等方差数列,又是等差数列,证明该数列为常数列;
(3)设数列{an}是首项为2,公方差为2的等方差数列,若将a1,a2,a3,…,a10这种顺序的排列作为某种密码,求这种密码的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

按照等差数列的定义我们可以定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a8的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)如果一个数列的各项都是实数,且从第二项起,每一项与它的前一项的平方差是同一个常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(Ⅰ)若数列{an}既是等方差数列,又是等差数列,求证:该数列是常数列;
(Ⅱ)已知数列{an}是首项为2,公方差为2的等方差数列,数列{bn}的前n项和为Sn,且满足an2=2n+1bn.若不等式2nSn>m•2n-2an2对?n∈N*恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果一个数列的各项均为实数,且从第二项起开始,每一项的平方与它前一项的平方的差都是同一个常数,则称该数列为等方差数列,这个常数叫做这个数列的公方差.
(1)若数列{bn}是等方差数列,b1=1,b2=3,求b7
(2)是否存在一个非常数数列的等差数列或等比数列,同时也是等方差数列?若存在,求出这个数列;若不存在,说明理由.
(3)若正项数列{an}是首项为2、公方差为4的等方差数列,数列{
1
an
}
的前n项和为Tn,是否存在正整数p,q,使不等式Tn
pn+q
-1
对一切n∈N*都成立?若存在,求出p,q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若各项都是实数的数列从第二项起,每一项与它前一项的平方差是同一常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(Ⅰ)若数列{an}是等差数列,前n项和为Tn,并且an2=T2n-1,求通项an
(Ⅱ)若数列{an}是首项为2,公方差为2的等方差数列,数列{bn}的前n项和为Sn,且an2=2n+1bn2nSn>m•2n-2an2对?n∈N*恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案