精英家教网 > 高中数学 > 题目详情

【题目】将边长为的正方形(及其内部)绕旋转一周形成圆柱,如图, 长为 长为,其中在平面的同侧.

(1)求三棱锥的体积;

(2)求异面直线所成的角的大小.

【答案】(1) (2) .

【解析】试题分析:(1)由题意可知,圆柱的高,底面半径,再由三角形面积公式计算后即得.

2)设过点的母线与下底面交于点,根据,知或其补角为直线所成的角,再结合题设条件确定.得出即可.

试题解析:(1)由题意可知,圆柱的高,底面半径

的长为,可知

2)设过点的母线与下底面交于点,则

所以或其补角为直线所成的角.

长为,可知

,所以

从而为等边三角形,得

因为平面,所以

中,因为,所以

从而直线所成的角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)是定义在区间(,+∞)上且以2为周期的函数,对k∈Z,用Ik表示区间(2k1,2k1),已知当xI0时,f(x)x2.f(x)Ik上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线y=t与曲线C:y=x(x﹣3)2的三个交点分别为A(a,t),B(b,t),C(c,t),且a<b<c.现给出如下结论:

①abc的取值范围是(0,4);

②a2+b2+c2为定值;③a+b+c=6

其中正确结论的为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆过点,直线过椭圆的右焦点且与椭圆交于两点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知点,求证:若圆与直线相切,则圆与直线也相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角梯形 分别是边上的点沿折起并连接成如图的多面体折后

(Ⅰ)求证:

(Ⅱ)若折后直线与平面所成角的正弦值是求证平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yf(x)和yg(x)在[-2,2]上的图象如图所示.给出下列四个命题:

①方程f[g(x)]=0有且仅有6个根;②方程g[f(x)]=0有且仅有3个根;

③方程f[f(x)]=0有且仅有7个根;④方程g[g(x)]=0有且仅有4个根.

其中正确命题的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,其中.

(1)对于函数,当时, ,求实数的集合;

(2)时, 的值恒为负数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1求函数的单调增区间;

2对任意成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的分布列,期望和方差.

附: ,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

同步练习册答案