精英家教网 > 高中数学 > 题目详情
13.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,类比这些等式,若$\sqrt{7+\frac{a}{b}}$=7$\sqrt{\frac{a}{b}}$(a,b均为正整数),则a+b=55.

分析 观察所给式子的特点,找到相对应的规律,问题得以解决.

解答 解:∵$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,
$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,
$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,
…,
∴$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$=2$\sqrt{\frac{2}{{2}^{2}-1}}$,
$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$=3$\sqrt{\frac{3}{{3}^{2}-1}}$,
$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$=4$\sqrt{\frac{4}{{4}^{2}-1}}$,
…,
$\sqrt{7+\frac{a}{b}}$=7$\sqrt{\frac{a}{b}}$=7$\sqrt{\frac{7}{{7}^{2}-1}}$
∴a=7,b=72-1=48,
∴a+b=48+7=55.
故答案为:55

点评 本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.某三棱锥的三视图如图所示,则该三棱锥中最长棱的棱长为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx-3在x=1处取得极值,且在点(0,-3)处的切线与直线2x+y=0平行,设两数g(x)=xf(x)+4x.
(Ⅰ)求函数g(x)的解析式,并求g(x)的单调递增区间;
(Ⅱ)求函数g(x)在x∈[0,2]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex-ax-1
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的最小值是-1,最小正周期为2π,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)已知f(α+β)=-$\frac{3}{5}$,f(α-β)=$\frac{4}{5}$,求tanαtanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在如图的空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为1,P是线段BD1上的一点,且BP=2PD1,则点P的坐标是(  )
A.($\frac{1}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)B.($\frac{2}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)C.($\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$)D.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和为Sn,Sn=n2(n∈N*),则①a3=5;②通项公式an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\frac{a}{{c}^{2}}$>$\frac{b}{{c}^{2}}$,则下列不等式一定成立的是(  )
A.a2>b2B.lga>lgbC.2a>2bD.$\frac{1}{b}$>$\frac{1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,内角A,B,C所对边分别为a,b,c,且a=3b,sinB=$\frac{1}{4}$,则sinA等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{9}$D.$\frac{3}{16}$

查看答案和解析>>

同步练习册答案