精英家教网 > 高中数学 > 题目详情
在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥平面ABC,∠ACB=90°.
(1)求证:BC⊥AA1
(2)若M,N是棱BC上的两个三等分点,求证:A1N平面AB1M.
证明:(Ⅰ)因为∠ACB=90°,所以AC⊥CB,
又侧面ACC1A1⊥平面ABC,且平面ACC1A1∩平面ABC=AC,BC?平面ABC,所以BC⊥平面ACC1A1
又AA1?平面ACC1A1,所以BC⊥AA1
(II)连接A1B,交AB1于O点,连接MO,
在△A1BN中,O,M分别为A1B,BN的中点,所以OMA1N
又OM?平面AB1M,A1N不属于平面AB1M,
所以A1N平面AB1M.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

棱长为a的正方体A1B1C1D1-ABCD中,O为面ABCD的中心.
(1)求证:AC1⊥平面B1CD1
(2)求四面体OBC1D1的体积;
(3)线段AC上是否存在P点(不与A点重合),使得A1P面CC1D1D?如果存在,请确定P点位置,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥P-ABCD中,ABCE为菱形,E、G、F分别是线段AD、CE、PB的中点.求证:FG平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,已知AB=2AD=4,E为AB的中点,现将△AED沿DE折起,使点A到点P处,满足PB=PC,设M、H分别为PC、DE的中点.
(1)求证:BM平面PDE;
(2)线段BC上是否存在一点N,使BC⊥平面PHN?试证明你的结论;
(3)求△PBC的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1
,M是线段EF的中点.
(1)证明:CM平面DFB
(2)求异面直线AM与DE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知四边形ABCD是正方形,PD⊥平面ABCD,PD=AD,点E,F分别是线段PB,AD的中点
(1)求证:FE平面PCD;
(2)求异面直线DE与AB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱PD⊥底面ABCD,PD=BC,E是PC的中点,求证:PA平面EDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(y的的7•海南)如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=9的°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

同步练习册答案