精英家教网 > 高中数学 > 题目详情
如图四棱锥P-ABCD中,ABCE为菱形,E、G、F分别是线段AD、CE、PB的中点.求证:FG平面PDC.
证明:连接BD与CE交于点0,∵E为AD的中点,ABCE为菱形,AE=BC=DE,
CO
OD
=
BC
DE
=1,得到O为线段CE的中点,故O与点G重合.
BG
GD
=
BC
ED
=1,∴G为BD的中点,又F为PB的中点,
∴FGPD,又∵FG?平面PDC,PD?平面PDC.
∴FG平面PDC.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

长方体ABCD-A1B1C1D1中,AB=3,AD=2,AA1=1,则从A点沿表面到C1点的最短距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,E为侧棱PD的中点,AC与BD的交点为O.求证:
(1)直线OE平面PBC;
(2)平面ACE⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD和正△PAB所在平面互相垂直,其中ABDC,AD=CD=
1
2
AB
,且O为AB中点.
(I)求证:BC平面POD;
(II)求证:AC⊥PD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD是矩形,O为底面中心,PA⊥平面ABCD,PA=AD=2AB.M是PD的中点
(1)求证:直线MO平面PAB;
(2)求证:平面PCD⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,点M,N分别为A′B和B′C′的中点.
(Ⅰ)证明:MN平面A′ACC′;
(Ⅱ)求三棱锥A′-MNC的体积.
(椎体体积公式V=
1
3
Sh,其中S为地面面积,h为高)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分别是AC,PB的中点.
(Ⅰ)证明:EF平面PCD;
(Ⅱ)若PA=AB,求EF与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在斜三棱柱ABC-A1B1C1中,侧面ACC1A1⊥平面ABC,∠ACB=90°.
(1)求证:BC⊥AA1
(2)若M,N是棱BC上的两个三等分点,求证:A1N平面AB1M.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD为直角梯形,BCAD,∠ADC=90°,BC=CD=
1
2
AD
,PA=PD,E,F为AD,PC的中点.
(Ⅰ)求证:PA平面BEF;
(Ⅱ)求证:AD⊥PB.

查看答案和解析>>

同步练习册答案