精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,底面ABCD为直角梯形,BCAD,∠ADC=90°,BC=CD=
1
2
AD
,PA=PD,E,F为AD,PC的中点.
(Ⅰ)求证:PA平面BEF;
(Ⅱ)求证:AD⊥PB.
(Ⅰ)证明:连接AC交BE于O,并连接EC,FO,∵BCAD,BC=
1
2
AD
,E为AD中点,∴AEBC,且AE=BC,∴四边形ABCE为平行四边形,…(1分)
∴O为AC中点.…(2分)
又∵F为AD中点,∴OFPA.…(4分)
∵OF?平面BEF,PA?平面BEF,…(5分)∴PA平面BEF. …(7分)
(Ⅱ)连接PE,∵PA=PD,E为AD中点,∴AD⊥PE.…(8分)
BCAD,BC=
1
2
AD
,E为AD的中点,∴BCDE为平行四边形,∴BECD.
∵AD⊥CD,∴AD⊥BE.
(9分)
∵PE∩BE=E,∴AD⊥平面PBE,…12分
∵PB?平面PBE,∴AD⊥PB. …14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图四棱锥P-ABCD中,ABCE为菱形,E、G、F分别是线段AD、CE、PB的中点.求证:FG平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知四边形ABCD是正方形,PD⊥平面ABCD,PD=AD,点E,F分别是线段PB,AD的中点
(1)求证:FE平面PCD;
(2)求异面直线DE与AB所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱PD⊥底面ABCD,PD=BC,E是PC的中点,求证:PA平面EDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列各图中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科)如图,正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,
求证:平面AMN平面EFDB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,E是DD1的中点.
(1)求证:BD1平面ACE
(2)过直线BD1是否存在与平面ACE平行的平面,若存在,请作出这个平面与长方体ABCD-A1B1C1D1的交线(请在答题卡上用黑色碳素笔和直尺作图),并证明这两个平面平行;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(y的的7•海南)如图,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=9的°,O为BC中点.
(Ⅰ)证明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

棱长为1的正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:其中正确的结论的个数为(  )
①AA1⊥MN
②异面直线AB1,BC1所成的角为60°
③四面体B1-D1CA的体积为
1
3

④A1C⊥AB1,A1C⊥BC1
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案