精英家教网 > 高中数学 > 题目详情
函数f(x)=x2+ax+4,g(x)=bx.它们的交点是P(4,4).
(1)求函数y=f(x)-g(x)的解析式;
(2)设H(x)=f(x+
5
2
)-g(x+
5
2
)
,请判断H(x)的奇偶性.
(3)求函数y=log
1
2
[f(x)-g(x)]
分析:(1)先根据两函数交于点P(4,4),求出两个函数的解析式,进而得到函数y=f(x)-g(x)的解析式;
(2)直接代入求出H(x)的解析式,再根据奇偶性的定义即可得到结论;
(3)先求出函数的定义域,再代入求出解析式即可.
解答:解:(1)由题得:f(4)=42+4a+4=4⇒a=-4⇒f(x)=x2-4x+4;
g(4)=4b=4⇒b=1⇒g(x)=x.
∴y=f(x)-g(x)=x2-5x+4.
(2)∴H(x)=f(x+
5
2
)-g(x+
5
2
)=(x+
5
2
)
2
-5×(x+
5
2
)+4
=x2-
9
4

∵(-x)=(-x)2-
9
4
=H(x).
故H(x)是偶函数.
(3)∵x2-5x+4>0⇒x>4或x<1.
∴y=log 
1
2
[f(x)-g(x)=log 
1
2
 (x2-5x+4),(x>4或x<1).
点评:本题是对函数知识的综合考查.在涉及到对数函数问题时,一定要注意真数大于0这一限制,避免出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax+4+2lnx
(I)当a=5时,求f(x)的单调递减函数;
(Ⅱ)设直线l是曲线y=f(x)的切线,若l的斜率存在最小值-2,求a的值,并求取得最小斜率时切线l的方程;
(Ⅲ)若f(x)分别在x1、x2(x1≠x2)处取得极值,求证:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+2x在[m,n]上的值域是[-1,3],则m+n所成的集合是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-2x-3的图象为曲线C,点P(0,-3).
(1)求过点P且与曲线C相切的直线的斜率;
(2)求函数g(x)=f(x2)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x2+2x,x∈(0,3]的值域为
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+
12
x
+lnx的导函数为f′(x),则f′(2)=
5
5

查看答案和解析>>

同步练习册答案