精英家教网 > 高中数学 > 题目详情
10.某次数学测验共有3道题,评分标准规定:“每题答对得5分,答错得0分”.已知某考生能正确解答这3道题的概率分别为$\frac{3}{5},\frac{1}{2},\frac{2}{5}$,且各个问题能否正确解答互不影响.
(I)求该考生至少答对一道题的概率;
(Ⅱ)记该考生所得分数为X,求X的分布列和数学期望.

分析 (Ⅰ)记“该考生至少答对一题”为事件A,Ai为事件“答对第i题”,i=1,2,3,由事件的独立性和互斥性,利用对立事件概率计算公式能求出该考生至少答对一道题的概率.
(Ⅱ)由已知得X的可能取值为0,5,10,15,分别求出相应的概率,由此能求出X的分布列和EX.

解答 解:(Ⅰ)记“该考生至少答对一题”为事件A,Ai为事件“答对第i题”,i=1,2,3,
由事件的独立性和互斥性,得:
P(A)=1-P($\overline{A}$)=1-$P(\overline{{A}_{1}})P(\overline{{A}_{2}})P(\overline{{A}_{3}})$
=1-$\frac{2}{5}×\frac{1}{2}×\frac{3}{5}$=$\frac{22}{25}$.
(Ⅱ)由已知得X的可能取值为0,5,10,15,
P(X=0)=P($\overline{{A}_{1}}$)P($\overline{{A}_{2}}$)P($\overline{{A}_{3}}$)=$\frac{2}{5}×\frac{1}{2}×\frac{3}{5}=\frac{6}{50}$,
P(X=5)=P(${A}_{1}\overline{{A}_{2}}\overline{{A}_{3}}$+$\overline{{A}_{1}}{A}_{2}\overline{{A}_{3}}$+$\overline{{A}_{1}}\overline{{A}_{2}}{{A}_{3}}^{\;}$)
=$\frac{3}{5}×\frac{1}{2}×\frac{3}{5}$+$\frac{2}{5}×\frac{1}{2}×\frac{3}{5}$+$\frac{2}{5}×\frac{1}{2}×\frac{2}{5}$=$\frac{19}{50}$,
P(X=10)=P(${A}_{1}{A}_{2}\overline{{A}_{3}}$+${A}_{1}\overline{{A}_{2}}{A}_{3}$+${A}_{1}{A}_{2}\overline{{A}_{3}}$)
=$\frac{3}{5}×\frac{1}{2}×\frac{3}{5}+\frac{3}{5}×\frac{1}{2}×\frac{2}{5}$+$\frac{2}{5}×\frac{1}{2}×\frac{2}{5}$=$\frac{19}{50}$,
P(X=15)=P(A1A2A3)=$\frac{3}{5}×\frac{1}{2}×\frac{2}{5}=\frac{6}{50}$,
∴X的分布列为:

 X 0 5 10 15
 P $\frac{6}{50}$ $\frac{19}{50}$ $\frac{19}{50}$ $\frac{6}{50}$
EX=$0×\frac{6}{50}+5×\frac{19}{50}+10×\frac{19}{50}$+$15×\frac{6}{50}$=$\frac{15}{2}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意对立事件的概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.等差数列{an}的前n项和为Sn,若S11=22,则a3+a7+a8=(  )
A.18B.12C.9D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点是圆x2+y2-10x+24=0的圆心,且虚轴长为6,则双曲线的离心率为(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{4}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,一根木棒AB长为2米,斜靠在墙壁AC上,∠ABC=60°,若AB滑动至A1B1位置,且$A{A_1}=(\sqrt{3}-\sqrt{2})$米,则①BB1=$\sqrt{2}$-1米;②木棒AB的中点D所经过的路程为$\frac{π}{12}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求过点(3,2)且与椭圆4x2+9y2=36有相同焦点的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=2msinx-ncosx,直线$x=\frac{π}{3}$是函数f(x)图象的一条对称轴,则$\frac{n}{m}$=-$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.a、b为非零实数,且a<b,则下列命题成立的是(  )
A.a2<b2B.$\frac{1}{{a{b^2}}}$<$\frac{1}{{{a^2}b}}$C.a2b<ab2D.$\frac{b}{a}$<$\frac{a}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,空间四边形ABCD的对棱AD、BC成90°的角,且AD=BC=a,平行于AD与BC的截面分别交AB、AC、CD、BD于E、F、G、H.E在AB上,截面EGFH的最大面积是$\frac{1}{4}{a}^{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.方程组$\left\{\begin{array}{l}3x+5y+6=0\\ 4x-3y-7=0\end{array}\right.$的增广矩阵是$[\begin{array}{l}{3}&{5}&{-6}\\{4}&{-3}&{7}\end{array}]$.

查看答案和解析>>

同步练习册答案