精英家教网 > 高中数学 > 题目详情
从盛满2升纯酒精的容器里倒出1升纯酒精,然后填满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒   次后才能使纯酒精体积与总溶液的体积之比低于10%.
4
设开始纯酒精体积与总溶液体积之比为1,操作一次后纯酒精体积与总溶液体积之比a1=,设操作n次后,纯酒精体积与总溶液体积之比为an,则an+1=an·,
∴an=a1qn-1=()n,∴()n<,得n≥4.
【方法技巧】建模解数列问题
对于数列在日常经济生活中的应用问题,首先分析题意,将文字语言转化为数学语言,找出相关量之间的关系,然后构建数学模型,将实际问题抽象成数学问题,明确是等差数列问题、等比数列问题,是求和还是求项,还是其他数学问题,最后通过建立的关系求出相关量.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

甲、乙两人用农药治虫,由于计算错误,在A,B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个能容纳1千克药水的药瓶,他们从A,B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为an%,B喷雾器中药水的浓度为bn%.
(1)证明an+bn是一个常数.
(2)求an与an-1的关系式.
(3)求an的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn.
(1)求数列{an}的通项公式.
(2)设数列{bn}满足bn=,其前n项和为Tn,求证:Tn<(n∈N*).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.
(1)当a2=-1时,求λ及a3的值.
(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足++…+=1-,n∈N* ,求{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将石子摆成如图的梯形形状.称数列5,9,14,20,…为“梯形数列”.根据图形的构成,此数列的第2012项与5的差,即a2012-5=(  )
A.1009×2011B.1009×2010
C.1009×2009D.1010×2011

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足an+1anan-1(n≥2),a1=1,a2=3,记Sna1a2+…+an,则下列结论正确的是(  )
A.a100=-1,S100=5 B.a100=-3,S100=5
C.a100=-3,S100=2 D.a100=-1,S100=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设各项为正的等比数列{an}的公比q≠1,且a3,a5,a6成等差数列,则的值为(  )
A.B.
C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=anx2(an≠0,n∈N*)的图像在x=1处的切线斜率为2an-1+1(n≥2,n∈N*),且当n=1时其图像过点(2,8),则a7的值为(  )
A.B.7
C.5 D.6

查看答案和解析>>

同步练习册答案