【题目】如图,四边形ABCD为菱形,ACEF为平行四边形,且平面ACEF⊥平面ABCD,设BD与AC相交于点G,H为FG的中点.
![]()
(1)证明:BD⊥CH;
(2)若AB=BD=2,AE=
,CH=
,求三棱锥F-BDC的体积.
科目:高中数学 来源: 题型:
【题目】如图所示:在五面体ABCDEF中,四边形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.
![]()
(Ⅰ)求证:平面ABCD⊥平面EDCF;
(Ⅱ)求三棱锥A-BDF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】即将于
年夏季毕业的某大学生准备到贵州非私营单位求职,为了了解工资待遇情况,他在贵州省统计局的官网上,查询到
年到
年非私营单位在岗职工的年平均工资近似值(单位:万元),如下表:
年份 |
|
|
|
|
|
|
|
|
|
|
序号 |
|
|
|
|
|
|
|
|
|
|
年平均工资 |
|
|
|
|
|
|
|
|
|
|
(1)请根据上表的数据,利用线性回归模型拟合思想,求
关于
的线性回归方程
(
,
的计算结果根据四舍五入精确到小数点后第二位);
(2)如果毕业生对年平均工资的期望值为8.5万元,请利用(1)的结论,预测
年的非私营单位在岗职工的年平均工资(单位:万元。计算结果根据四舍五入精确到小数点后第二位),并判断
年平均工资能否达到他的期望.
参考数据:
,
,![]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
附:对于一组具有线性相关的数据:
,
,
,
,
其回归直线
的斜率和截距的最小二乘法估计分别为
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的
名学生进行了跟踪调查,其中每周自主做数学题的时间不少于
小时的有
人,余下的人中,在高三模拟考试中数学成绩不足
分的占
,统计成绩后,得到如下的
列联表:
分数大于等于 | 分数不足 | 合计 | |
周做题时间不少于 | 4 | 19 | |
周做题时间不足 | |||
合计 | 45 |
(
)请完成上面的
列联表,并判断能否在犯错误的概率不超过
的前提下认为“高中生的数学成绩与学生自主学习时间有关”.
(
)(i)按照分层抽样的方法,在上述样本中,从分数大于等于
分和分数不足
分的两组学生中抽取
名学生,设抽到的不足
分且周做题时间不足
小时的人数为
,求
的分布列(概率用组合数算式表示).
(ii)若将频率视为概率,从全校大于等于
分的学生中随机抽取
人,求这些人中周做题时间不少于
小时的人数的期望和方差.
附:![]()
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是由容量为100的样本得到的频率分布直方图.其中前4组的频率成等比数列,后6组的频数成等差数列,设最大频率为a,在
到
之间的数据个数为b,则a,b的值分别为( )
![]()
A.
,78
B.
,83
C.
,78
D.
,83
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面积为
,求C的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com