精英家教网 > 高中数学 > 题目详情
已知二次函数y=f(x)的图象在y轴上的截距为1,对于任意的x∈R,都有f(x+1)=f(x)+2x-2恒成立.
(I)求y=f(x)的解析式;
(Ⅱ)设集合A={f(x)|n<x≤n+1,f(x)∈Z,n∈N*},记A中的元素个数为an.试求a1,a2和数列{an}的通项公式.
考点:数列与函数的综合
专题:等差数列与等比数列
分析:(I)设f(x)=ax2+bx+c(a≠0).由题意f(x+1)=f(x)+2x-2,从而2ax+a+b=2x-2恒成立.由此求出f(x)=x2-3x+1.
(II)由f(x)=x2-3x+1,得:-
5
4
≤f(x)≤-1
,由此能求出结果.
解答: 解:(I)设f(x)=ax2+bx+c(a≠0).
由题意f(x+1)=f(x)+2x-2,
有a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x-2,
整理得:2ax+a+b=2x-2恒成立.
2a=2
a+b=-2
解得:
a=1
b=-3

又y=f(x)在y轴上的截距为1,
∴有f(0)=c=1
故f(x)=x2-3x+1.(4分)
(II)由f(x)=x2-3x+1,
f(x)在区间(-∞,
3
2
]上为减函数,在区间[
3
2
,+∞)上为增函数
当n=1时 ,即1<x≤2时,f(
3
2
)≤f(x)≤f(2)

解得:-
5
4
≤f(x)≤-1

∵f(x)∈Z故f(x)=-1,
∴a1=1当n=2时,即2<x≤3时,f(2)<f(x)≤f(3),
解得:-1<f(x)≤1,
∵f(x)∈Z,故f(x)取到0和-1两个值,
∴a2=2当n≥2时,即n<x≤n+1时,f(n)<f(x)≤f(n+1),
解得:n2-3n+1<f(x)≤(n+1)-3(n+1)+1,且f(x)∈Z,
an=(n+1)-3(n+1)+1-(n2-3n+1)=2n-2,
an=
1,(n=1)
2n-2,(n≥2)
.(10分)
点评:本题考查y=f(x)的解析式的求法,考查a1,a2和数列{an}的通项公式的求法,是中档题,解题时要注意函数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x-1﹚=x2,则f(x)的解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当0<x<4时,y=x(8-2x)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+ax-b.若a、b都是从区间[0,4]内任取的一个数,则f(1)>0成立的概率是(  )
A、
9
16
B、
9
32
C、
7
16
D、
23
32

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a7等于(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(log2x)2-2a(log2x)+b,当x=
1
2
时有最小值-8,
(1)求a,b的值;     
(2)当x∈[
1
4
,8]时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=x2-6x+8的定义域为x∈[1,a],值域为[-1,3],则a的取值范围是(  )
A、(1,3)
B、(1,5)
C、(3,5)
D、[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

某校数学兴趣班将10名成员平均分为甲、乙两组进行参赛选拔,在单位时间内每个同学做竞赛题目若干,其中做对题目的个数如下表:

同学
个数
组别
1号2号3号[4号5号
甲组457910
乙组56789
(Ⅰ)分别求出甲、乙两组同学在单位时间内做对题目个数的平均数及方差,并由此分析这两组的数学水平;
(Ⅱ)学校教务部门从该兴趣班的甲、乙两组中各随机抽取1名学生,对其进行考查,若两人做对题目的个数之和超过12个,则称该兴趣班为“优秀兴趣班”,求该兴趣班获“优秀兴趣班”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx2+cx+d是定义在R上的函数,其图象交x轴于A、B、C三点,若点B坐标为(2,0),且f(x)在[-1,0]和[4,5]上有相同单调性,在[0,2]和[4,5]上有相反的单调性.
(1)求c的值;
(2)求|AC|的取值范围.

查看答案和解析>>

同步练习册答案