精英家教网 > 高中数学 > 题目详情
有下列命题:
①f(x)=ax-l+1(a>0,且a≠1)的图象恒过定点(1,2);
②已知f(x)=
(
1
2
)x,x>3
f(x+1),x≤3
则f(log25)=
1
10

sin(π-α)cos(-α)cos(
2
-α)
cos(
π
2
+α)sin(-π-α)
=cosα

其中正确命题的个数为(  )
分析:①利用a0=1(a≠0),只要令x=1即可求出定点.
②先判断log25的大小,可知3>log25>2,而log25+1>3,代入计算即可.
③利用诱导公式“奇变偶不变,符号看象限”,即可计算出.
解答:解:①当x=1时,f(1)=a0+1=2(a≠0),∴函数f(x)=ax-l+l(a>0,且a≠1)的图象恒过定点(1,2),故①正确;
②∵2<log25<3,∴3<log25+1,∴f(log25)=f(log25+1)=(
1
2
)log25+1
=2-log25-1=(2log25)-1×2-1=5-1×2-1=
1
10
,∴②正确;
sin(π-α)cos(-α)cos(
2
-α)
cos(
π
2
+α)sin(-π-α)
=
sinαcosα(-sinα)
-sinα[-(-sinα)]
=cosα.故③正确.
综上可知:①②③皆正确.
故选A.
点评:本题综合考查了函数过定点问题、分段函数及三角恒等变形,充分理解a0=1(a≠0)、分段函数在不同区间的解析式不同、三角函数的诱导公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、关于在区间(a,b)上的可导函数f(x),有下列命题:①f(x)在(a,b)上是减函数的充要条件是
f′(x)<0;②(a,b)上的点x0为f(x)的极值点的充要条件是f′(x0)=0;③若f(x)在(a,b)上有唯一的极值点x0,则x0一定是f(x)的最值点;④f(x)在(a,b)上一点x0的左右两侧的导数异号的充要条件是点x0是函数f(x)的极值点.其中正确命题的序号为
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lg
x2+1|x|
(x≠0,x∈R),有下列命题:
①f(x)的图象关于y轴对称;
②f(x)的最小值是lg2;
③f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;
④f(x)没有最大值.
其中正确命题的序号是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=
2
sin(2x+
12
)
,有下列命题:①f(x)的最大值为
2
;②f(x)是以π为最小正周期的周期函数;③f(x)在区间(
π
24
13π
24
)上单调递减;④将函数y=
2
cos2x的图象向左平移
π
24
个单位后,将与f(x)的图象重合,其中正确命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数h(x)=x2,m(x)=2elnx(e为自然对数的底数),φ(x)=x-2,d(x)=-1.
有下列命题:
①f(x)=h(x)-m(x)在x∈(0,
e
)
递减;
②h(x)和d(x)存在唯一的“隔离直线”;
③h(x)和φ(x)存在“隔离直线”y=kx+b,且b的最大值为-
1
4

④函数h(x)和m(x)存在唯一的隔离直线y=2
e
x-e

其中真命题的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•奉贤区二模)关于函数f(x)=xarcsin2x有下列命题:①f(x)的定义域是R;②f(x)是偶函数;③f(x)在定义域内是增函数;④f(x)的最大值是
π4
,最小值是0.其中正确的命题是
②④
②④
.(写出你所认为正确的所有命题序号)

查看答案和解析>>

同步练习册答案