| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 设P(x0,y0),由${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$和P(x0,y0)为椭圆上任意一点,列出方程组,能求出使得${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$成立的P点的个数.
解答 解:设P(x0,y0),
∵F1,F2分别为椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的左右两个焦点,点P为椭圆上任意一点,
∴F1(-4,0),F2(4,0),
$\overrightarrow{P{F}_{1}}$=(-4-x0,-y0),$\overrightarrow{P{F}_{2}}$=(4-x0,-y0),
∵${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$,∴(-4-x0)(4-x0)+(-y0)2=-7,即${{x}_{0}}^{2}+{{y}_{0}}^{2}$=9,①
又∵设P(x0,y0)为椭圆上任意一点,∴$\frac{{{x}_{0}}^{2}}{25}+\frac{{{y}_{0}}^{2}}{9}=1$,②
联立①②,得:$\left\{\begin{array}{l}{{x}_{0}=0}\\{{y}_{0}=3}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{0}=0}\\{{y}_{0}=-3}\end{array}\right.$,
∴使得${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}=-7$成立的P点的个数为2个.
故选:C.
点评 本题考查满足条件的点的个数的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}x=tant\\ y=\frac{1+cos2t}{1-cos2t}\end{array}$ | B. | $\left\{\begin{array}{l}x=tant\\ y=\frac{1-cos2t}{1+cos2t}\end{array}$ | ||
| C. | $\left\{\begin{array}{l}{x=|t|}\\{y={t}^{2}}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=cost}\\{y=co{s}_{\;}^{2}t}\end{array}\right.$. |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com