精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c在x=-2处取得极值,并且它的图象与直线y=-3x+3在点( 1,0 ) 处相切,
(1)求a,b,c的值;
(2)求f(x)的极值.
考点:利用导数研究函数的极值
专题:计算题,导数的概念及应用
分析:(1)求出f′(x),因为函数在x=-2处取得极值,所以f′(-2)=0,又因为函数与直线在点 (1,0 )处相切,所以f′(1)=-3,代入求得两个关于a与b的二元一次方程,求出解集得到a和b,又因为函数过点(1,0),代入求出c的值即可.
(2)由(1)求出的值可得导函数的解析式,分别令其大于、小于0可求增、减区间,即可求出f(x)的极值.
解答: 解:(1)∵f′(x)=3x2+2ax+b,
∴f′(-2)=3×(-2)2+2a×(-2)+b=0
∴12-4a+b=0   ①
又f′(1)=3+2a+b=-3  ②,
由①②解得a=1,b=-8
又f(x)过点(1,0),
∴13+a×12+b×1+c=0,∴c=6
(2)由(1)知:f(x)=x3+x2-8x+6,所以f′(x)=3x2+2x-8
令3x2+2x-8<0解得-2<x<
4
3

令3x2+2x-8>0解得x<-2,或x>
4
3

故f(x)的单调递增区间为(-∞,-2)和(
4
3
,+∞),
f(x)的单调递减区间为(-2,
4
3

∴在x=-2处取得极大值18,在x=
4
3
处取得极小值-
5
9
点评:本题考查学生利用导数研究函数极值的能力,利用导数研究曲线上某点处的切线方程,函数在曲线上某点处的导数值,就是曲线在该点处的切线的斜率,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的解析式为f(x)=-(x-1)2+16,令g(x)=(2-2a)x-f(x).
(1)若函数g(x)在x∈[0,2]上是单调增函数,求实数a的取值范围;
(2)求函数g(x)在x∈[0,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-1,2)为曲线C:y=2x2上的点,直线l1过点A,且与曲线C相切,
直线l2:x=a(a>-1)交曲线C于B,交直线l1于点D.
(Ⅰ) 求直线l1的方程;
(Ⅱ)设△BAD的面积为S1,求S1的值;
(Ⅲ) 设由曲线C,直线l1,l2所围成的图形的面积为S2,求证S1:S2的值为与a无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x+1)的定义域为[2,5],求f(x2+1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式 ax2+x-a>1,a∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在原点,焦点在x轴上,离心率e=
2
2
,过椭圆的右焦点且垂直于长轴的弦长为
2

(1)求椭圆的标准方程;
(2)A为椭圆左顶点,P,Q为椭圆上异于A的任意两点,若
AP
AQ
,求证:直线PQ过定点并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},其前n项和Sn=n2,数列{bn}满足bn=2an
(1)求数列{an}、{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项等比数列{an}满足:lna1+lna2=4,lna4+lna5=10.
(1)求数列{an}的通项公式;
(2)记Sn=lna1+lna2+…+lnan,数列{bn}满足bn=
1
2Sn
,若存在n∈N,使不等式K<(b1+b2+…+bn)(
2
3
n 成立,求实数K的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若由一个2×2列联表中的数据计算得χ2=4.073,那么有
 
的把握认为两变量有关系[已知P(χ2≥3.841)≈0.05,P(χ2≥5.024)≈0.025].

查看答案和解析>>

同步练习册答案