精英家教网 > 高中数学 > 题目详情
13.执行如图所示的程序框图,若输出y=2,则输出的x的取值范围是(  )
A.[6,23]B.(12,25]C.(14,26]D.[25,52]

分析 由框图知,此程序输出的y是循环次数,循环退出的条件是x>51,由此关系得出不等式,求出x的取值范围即可.

解答 解:当输出y=2时,应满足$\left\{\begin{array}{l}{2x+1≤51}\\{2(2x+1)+1>51}\end{array}\right.$,得12<x≤25.
故选:B.

点评 本题考查循环结构,解题的关键是根据框图得出其运算律,从而得到x所满足的不等式,解不等式求出要求的范围,由运算规则得出不等式组是本题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{1}{2}$,过上顶点A与AF2垂直的直线交x轴于Q点,且2$\overrightarrow{{F}_{1}{F}_{2}}$+$\overrightarrow{{F}_{2}Q}$=$\overrightarrow{0}$,过A,Q,F2三点的圆恰好与直线x-$\sqrt{3}$y-3=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F2的直线l与椭圆C交于不同的两点M,N,△F1MN的面积是否存在最大值?若存在,求出这个最大值及此事直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=cos2($\frac{π}{2}+x$)+$\sqrt{3}$sin($\frac{π}{2}$+x)cos($\frac{5π}{2}$-x),x∈R.
(1)求函数f(x)的单调递增区间,并求f(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值;
(2)在三角形ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若f(A)+f(-A)=$\frac{3}{2}$,b+c=7,三角形ABC的面积为2$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若函数f(x)在定义域D内的某个区间I上是增函数,且F(x)=$\frac{f(x)}{x}$在I上也是增函数,则称y=f(x)是I上的“完美增函数”.已知f(x)=ex+x,g(x)=ex+x-lnx+1.
(1)判断函数f(x)是否为区间(0,+∞)上的“完美增函数”;
(2)若函数g(x)是区间$[{\frac{m}{2},+∞})$上的“完美增函数”,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在平面直角坐标系中,集合A={(x,y)|y=x},集合B={(x,y)|$\left\{\begin{array}{l}{2x-y=2}\\{x+2y=6}\end{array}\right.$},则集合A与B的关系是
(  )
A.A=BB.A⊆BC.B∈AD.B⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“φ=$\frac{π}{2}$,”是“曲线y=cos(2x+φ)”过原点的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若命题p:x2+2x+a=0有实根,命题q:函数f(x)=(a2-a)x是增函数,若p∨q为真,p∧q为假,则a的取值范围是(  )
A.a>0B.a≥0C.a>1D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(3,-2),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(-12,7),若$\overrightarrow{c}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$,m,n∈R,则m+n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.六人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不站右端,也不站左端;
(2)甲、乙站在两端;
(3)甲不站左端,乙不站右端.

查看答案和解析>>

同步练习册答案