【题目】设椭圆
:
(
),左、右焦点分别是
、
且
,以
为圆心,3为半径的圆与以
为圆心,1为半径的圆相交于椭圆
上的点![]()
(1)求椭圆
的方程;
(2)设椭圆
:
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
两点,射线
交椭圆
于点![]()
①求
的值;
②令
,求
的面积
的最大值.
【答案】(1)
(2)①
②![]()
【解析】
(1)运用圆与圆的位置关系,
和
的关系,计算即可得到
,进而得到椭圆
的方程;
(2)求得椭圆
的方程,①设
,
,求得
的坐标,分别代入椭圆
的方程,化简整理,即可得到所求值;
②设
,
将直线
代入椭圆
的方程,运用韦达定理,三角形的面积公式,将直线
代入椭圆
的方程,由判别式大于0,可得
的范围,结合二次函数的最值,,
的面积为
,即可得到所求的最大值.
解:(1)由题意可知,
,可得
,
又![]()
,
,
![]()
即有椭圆
的方程为
;
(2)由(1)知椭圆
的方程为
,
①设
,
,由题意可知,
,由于
,
代入化简可得
,
所以
,即
;
②设
,
,将直线
代入椭圆
的方程,可得
![]()
,由
,可得
,③
则有
,
,
所以
,
由直线
与
轴交于
,
则
的面积为![]()
![]()
设
,则
,
将直线
代入椭圆
的方程,
可得![]()
,
由
可得
,④
由③④可得
,则
在
递增,即有
取得最大值,
即有
,即
,取得最大值
,
由①知,
的面积为
,
即
面积的最大值为
.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)的离心率
,左、右焦点分别为
,
,过右焦点
任作一条不垂直于坐标轴的直线l与椭圆C交于A,B两点,
的周长为
.
(1)求椭圆C的方程;
(2)记点B关于x轴的对称点为
点,直线
交x轴于点D.求
的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
上一点
到其焦点下的距离为10.
(1)求抛物线C的方程;
(2)设过焦点F的的直线
与抛物线C交于
两点,且抛物线在
两点处的切线分别交x轴于
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直线PB与CD所成角的大小为
,求BC的长;
(Ⅱ)求二面角B-PD-A的余弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为
A. 254B. 381C. 510D. 765
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完n片金片总共需要的次数为an,可推得a1=1,an+1=2an+1.如图是求移动次数在1000次以上的最小片数的程序框图模型,则输出的结果是( )
![]()
A. 8B. 9C. 10D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
,
,过点
的直线
分别与直线
,
交于
,其中点
在第三象限,点
在第二象限,点
;
(1)若
的面积为
,求直线
的方程;
(2)直线
交于
点
,直线
交
于点
,若
直线的斜率均存在,分别设为
,判断
是否为定值?若为定值,求出该定值;若不为定值,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com