精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,过点A(-2,-1)椭圆数学公式的左焦点为F,短轴端点为B1、B2数学公式
(1)求a、b的值;
(2)过点A的直线l与椭圆C的另一交点为Q,与y轴的交点为R.过原点O且平行于l的直线与椭圆的一个交点为P.若AQ•AR=3OP2,求直线l的方程.

解:(1)由题意,F(-c,0),B1(0,-b),B2(0,b),则

∴c2-b2=2b2
∵椭圆过点A(-2,-1)

由①②解得a2=8,b2=2

(2)由题意,设直线l的方程为y+1=k(x+2),代入椭圆方程可得(x+2)[(4k2+1)(x+2)-(8k+4)]=0
∵x+2≠0,∴,∴xQ+2=
由题意,直线OP的方程为y=kx,代入椭圆方程可得(4k2+1)x2=8

∵AQ•AR=3OP2


∴k=1或k=-2
当k=1时,直线l的方程为x-y+1=0;当k=-2时,直线l的方程为2x+y+5=0
分析:(1)利用,可得c2-b2=2b2,根据椭圆过点A(-2,-1),可得,由此可求a、b的值;
(2)设直线l的方程代入椭圆方程,求出Q的横坐标;直线OP的方程代入椭圆方程,求出P的横坐标,利用AQ•AR=3OP2,建立方程,即可求得直线l的方程.
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-2y=0,则它的离心率为(  )
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=4cosθ,则圆心C到直线l的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程) 在平面直角坐标系xOy中,圆C的参数方程为
x=2cosθ
y=2sinθ+2
 (参数θ∈[0,2π)),若以原点为极点,射线ox为极轴建立极坐标系,则圆C的圆心的极坐标为
 
,圆C的极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.
(Ⅰ)若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步练习册答案