精英家教网 > 高中数学 > 题目详情

的左、右顶点分别是,左、右焦点分别是成等比数列,则此椭圆的离心率为 (    )

A.            B.        C.             D.

 

【答案】

B

【解析】

试题分析:因为成等比数列,所以.因为,所以,所以,所以

考点:本小题主要考查了等比数列的性质和椭圆离心率的求法,考查学生综合运用所学知识的能力.

点评:求椭圆的离心率,关键是求出,而不是要把分别求出来.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•武昌区模拟)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的中心、上顶点、右焦点构成面积为1的等腰直角三角形.
(1)求椭圆的方程;
(2)若A、B分别是椭圆的左、右顶点,点M满足MB⊥AB,连接AM,交椭圆于P点,试问:在x轴上是否存在异于点A的定点C,使得以MP为直径的圆恒过直线BP、MC的交点,若存在,求出C点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题16分)已知椭圆C1上的点满足到两焦点的距离之和为4,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。

    (1) 求双曲线C2的方程;

    (2) 若以椭圆的右顶点为圆心,该椭圆的焦距为半径作一个圆,一条过点P(1,1)直线与该圆相交,交点为A、B,求弦AB最小时直线AB的方程,求求此时弦AB的长。

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题16分)已知椭圆C1上的点满足到两焦点的距离之和为4,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。

    (1) 求双曲线C2的方程;

    (2) 若以椭圆的右顶点为圆心,该椭圆的焦距为半径作一个圆,一条过点P(1,1)直线与该圆相交,交点为A、B,求弦AB最小时直线AB的方程,求求此时弦AB的长。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省“皖西七校”高三年级联合考试文科数学试卷(解析版) 题型:解答题

如图,椭圆经过点,其左、右顶点分别是,左、右焦点分别是(异于)是椭圆上的动点,连接交直线两点,成等比数列.

)求此椭圆的离心率;

)求证:以线段为直径的圆过点.

 

查看答案和解析>>

同步练习册答案