精英家教网 > 高中数学 > 题目详情

【题目】所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥 中, 的中点,且 ,底面边长 ,则正三棱锥 的体积为 , 其外接球的表面积为

【答案】
【解析】取 中点 ,则 ,又∵ ,∴ 平面 ,∵ 平面 ,∴ ,又∵ ,∴ 平面 ,∴
,根据对称性可知 ,从而可知 两两垂直,如下图所示,

将其补为立方体,其棱长为 ,∴ ,其外接球即为立方体的外接球,半径 ,表面积
【考点精析】本题主要考查了棱锥的结构特征的相关知识点,需要掌握侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中, ,O为平面内一点,且 ,M为劣弧 上一动点,且 ,则p+q的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a3+a4=12,公差d=2,记数列{a2n﹣1}的前n项和为Sn
(1)求Sn
(2)设数列{ }的前n项和为Tn , 若a2 , a5 , am成等比数列,求Tm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )
A.若p∨q为真命题,则p∧q为真命题
B.“a>0,b>0”是“ ≥2”的充要条件
C.命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”
D.命题p:x∈R,x2+x-1<0,则﹁p:x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能 与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格 .人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有 的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为 。若每次抽取的结果是相互独立的,求 的分布列,期望 和方差 .
附: ,其中 .

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,则x>1;
③“若a>b>0且c<0,则 ”的逆否命题;
④若p且q为假命题,则p,q均为假命题.
其中真命题是( )
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的奇函数f(x),当x≥0时,f(x)=log3(x+1).若关于x的不等式f[x2+a(a+2)]≤f(2ax+2x)的解集为A,函数f(x)在[-8,8]上的值域为B,若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的函数f(x)满足f(x+2)=-f(x),且 ,则函数g(x)=lg x的图象与函数f(x)的图象的交点个数为( )
A.3
B.5
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求不等式 的解集;
(2)若关于 的不等式 的解集不是空集,求实数 的取值范围.

查看答案和解析>>

同步练习册答案