精英家教网 > 高中数学 > 题目详情

【题目】北京时间3月15日下午,谷歌围棋人工智能 与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格 .人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有 的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为 。若每次抽取的结果是相互独立的,求 的分布列,期望 和方差 .
附: ,其中 .

0.05

0.01

3.841

6.635

【答案】解:(Ⅰ)由频率分布直方图可知,在抽取的100人中,“围棋迷”有25人,从而 列联表如下

非围棋迷

围棋迷

合计

30

15

45

45

10

55

合计

75

25

100


列联表中的数据代入公式计算,得

因为 ,所以没有理由认为“围棋迷”与性别有关.
(Ⅱ)由频率分布直方图知抽到“围棋迷”的频率为0.25,将频率视为概率,即从观众中抽取一名“围棋迷”的概率为 .由题意 ,从而 的分布列为

0

1

2

3


. .
【解析】本题主要考查了频率分布直方图,以及独立检验数学期望的求法的应用。(1)根据频率分布直方图填写2×2分布图,计算观测值,比较临界值即可得结论。(2)由频率分布直方图计算频率,将频率视为概率,然后由分布列,根据数学期望计算求解。
【考点精析】认真审题,首先需要了解频率分布直方图(频率分布表和率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)证明:k∈R,直线y=g(x)都不是曲线y=f(x)的切线;
(2)若x∈[e,e2],使得f(x)≤g(x)+ 成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,左焦点为F(﹣1,0),过点D(0,2)且斜率为k的直线l交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使 恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥P﹣ABC中,△ABC是正三角形,△ACP是直角三角形,∠ABP=∠CBP,AB=BP.

(1)证明:平面ACP⊥平面ABC;
(2)若E为棱PB与P不重合的点,且AE⊥CE,求AE与平面ABC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若ax2+bx+c<0的解集为{x|x<-2,或x>4},则对于函数f(x)=ax2+bx+c应有( )
A.f(5)<f(2)<f(-1)
B.f(5)<f(-1)<f(2)
C.f(-1)<f(2)<f(5)
D.f(2)<f(-1)<f(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥 中, 的中点,且 ,底面边长 ,则正三棱锥 的体积为 , 其外接球的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有如下四个命题:
p1x0∈(0,+∞), <
p2x0
p3x∈R,2x>x2
p4x∈(1,+∞),
其中真命题是( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)= 则函数h(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥 中, ,平面 平面 分别为 的中点.

(1)求证: 平面
(2)求证:
(3)求三棱锥 的体积.

查看答案和解析>>

同步练习册答案