精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4,(-1≤x<0)}\\{sinπx,(x>0)}\end{array}\right.$且f(x)-ax≥-1对于定域内的任意的x恒成立,则a的取值范围是-6≤a≤0.

分析 利用转化法不等式化为f(x)+1≥ax,再分类讨论分段函数对应的解析式,从而求出实数a的取值范围.

解答 解:由f(x)-ax≥-1得f(x)+1≥ax,
当x>0时,不等式等价为sinπx+1≥ax,
∵当x>0时,sinπx+1≥0,
而y=ax过原点,∴此时则a≤0,
当-1≤x<0时,不等式的等价为x2+5≥ax,
即$\frac{{x}^{2}+5}{x}$≤a,
即x+$\frac{5}{x}$≤a恒成立,
设g(x)=x+$\frac{5}{x}$,则g′(x)=1-$\frac{5}{{x}^{2}}$=$\frac{{x}^{2}-5}{{x}^{2}}$,
当-1≤x<0时,g′(x)<0,即函数g(x)为减函数,
则g(x)≤g(-1)=-1-5=-6,
即a≥-6;
综上,a的取值范围是-6≤a≤0.
故答案为:-6≤a≤0.

点评 本题主要考查不等式恒成立问题,利用参数分离法结合分类讨论转化为求函数的最值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的各项均不为0,其前n项和为Sn,且满足a1=a,2Sn=anan+1
(1)求a2的值;
(2)求证{a2n}是等差数列;
(3)若a=-9,求数列{an}的通项公式an,并求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:
(1)射中10环或9环的概率;
(2)至少射中7环的概率;
(3)射中环数小于8环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.指数函数f(x)=(2-a)x是单调函数,则a的取值范围是(  )
A.(1,2)∪(-∞,1)B.(1,2)C.(-∞,1)D.(1,2)∪(-∞,1)∪(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知z1=sinθ-$\frac{4}{5}$i,z2=$\frac{3}{5}$-cosθi,若z1-z2是纯虚数,则tanθ=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设p:x<-3或x>1,q:x<-2或x>1,则¬p是¬q的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.淮南二中体育教研组为研究学生的身体素质与课外体育锻炼时间的关系,对本校200名高二学生的课外体育锻炼平均每天运动的时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间(分钟)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
总人数203644504010
将学生日均课外体育运动时间在[40,60)上的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?
课外体育不达标课外体育达标合计
15110
合计
(2)将上述调查所得到的频率视为概率,现在从该校高三学生中,抽取3名学生,记被抽取的3名学生中的:“课外体育达标”学生人数为X,若每次抽取的结果是相互独立的,求X的数学期望和方差.
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设命题p:?x∈R,x2>lnx,则¬p为(  )
A.?x0∈R,x02>lnx0B.?x∈R,x2≤lnxC.?x0∈R,x02≤lnx0D.?x∈R,x2<lnx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=x2+bx+c的两个零点为1,3.
(1)求b,c;
(2)当x∈[1,4]时,求f(x)的值域.

查看答案和解析>>

同步练习册答案