分析 (1)在2Sn=anan+1式中将n=1代入即可求出a2的值;
(2)由2Sn=anan+1,可得n≥2时,2Sn-1=an-1an,两式相减可得递推关系式2an=an(an+1-an-1),因为an≠0,所以an+1-an-1=2,可证数列{a2k}为等差数列;
(3)由(2){a2k-1},{a2k}都是公差为2的等差数列,分n为奇数与偶数分别求通项公式与和即可.
解答 (1)解:∵2Sn=anan+1,∴n=1时,2S1=a1a2,即2a1=a1a2,∵a1=a≠0,∴a2=2.
(2)证明:∵2Sn=anan+1,∴n≥2时,2Sn-1=an-1an,∴2an=2Sn-2Sn-1=anan+1-an-1an,∵an≠0,
∴an+1-an-1=2,∴a2n+2-a2n=2.∴{a2n}是等差数列,首项为2,公差为2.
(3)解:由(2)可得:{a2n-1},{a2n}都是公差为2的等差数列,
当n=2k(k∈N*)时,an=2+2(k-1)=2k=n;
当n=2k-1时,an=a1+2(k-1)=-9+2k-2=2k-11=n-10.
∴an=$\left\{\begin{array}{l}{n-10,n为奇数}\\{n,n为偶数}\end{array}\right.$,
${S_n}=\left\{{\begin{array}{l}{\frac{1}{2}(n-10)(n+1),n为奇数}\\{\frac{1}{2}n(n-9),n为偶数}\end{array}}\right.$.
点评 本题考查了数列递推关系、等差数列的通项公式与求和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若整数a,b中至多有一个偶数,则ab是偶数 | |
| B. | 若整数a,b都不是偶数,则ab不是偶数 | |
| C. | 若ab不是偶数,则整数a,b都不是偶数 | |
| D. | 若ab不是偶数,则整数a,b不都是偶数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,$\frac{π}{3}$] | B. | [$\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$] | C. | [0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π) | D. | [$\frac{π}{3}$,$\frac{2π}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com