精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的各项均不为0,其前n项和为Sn,且满足a1=a,2Sn=anan+1
(1)求a2的值;
(2)求证{a2n}是等差数列;
(3)若a=-9,求数列{an}的通项公式an,并求Sn

分析 (1)在2Sn=anan+1式中将n=1代入即可求出a2的值;
(2)由2Sn=anan+1,可得n≥2时,2Sn-1=an-1an,两式相减可得递推关系式2an=an(an+1-an-1),因为an≠0,所以an+1-an-1=2,可证数列{a2k}为等差数列;
(3)由(2){a2k-1},{a2k}都是公差为2的等差数列,分n为奇数与偶数分别求通项公式与和即可.

解答 (1)解:∵2Sn=anan+1,∴n=1时,2S1=a1a2,即2a1=a1a2,∵a1=a≠0,∴a2=2.
(2)证明:∵2Sn=anan+1,∴n≥2时,2Sn-1=an-1an,∴2an=2Sn-2Sn-1=anan+1-an-1an,∵an≠0,
∴an+1-an-1=2,∴a2n+2-a2n=2.∴{a2n}是等差数列,首项为2,公差为2.
(3)解:由(2)可得:{a2n-1},{a2n}都是公差为2的等差数列,
当n=2k(k∈N*)时,an=2+2(k-1)=2k=n;
当n=2k-1时,an=a1+2(k-1)=-9+2k-2=2k-11=n-10.
∴an=$\left\{\begin{array}{l}{n-10,n为奇数}\\{n,n为偶数}\end{array}\right.$,
${S_n}=\left\{{\begin{array}{l}{\frac{1}{2}(n-10)(n+1),n为奇数}\\{\frac{1}{2}n(n-9),n为偶数}\end{array}}\right.$.

点评 本题考查了数列递推关系、等差数列的通项公式与求和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知A={x|x2-3x+2=0},B={x|x2-2ax+a2-a=0},若A∪B=A,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等式x2-px-q<0的解集是{x|2<x<3},则p=5,q=-6则不等式qx2-px-1>0的解集是($-\frac{1}{2},-\frac{1}{3}$ ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“若整数a、b中至少有一个是偶数,则ab是偶数”的逆否命题为(  )
A.若整数a,b中至多有一个偶数,则ab是偶数
B.若整数a,b都不是偶数,则ab不是偶数
C.若ab不是偶数,则整数a,b都不是偶数
D.若ab不是偶数,则整数a,b不都是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3.
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)指出由函数y=3sin$\frac{x}{2}$通过怎样的变换可以得到函数f(x)=3sin($\frac{x}{2}$+$\frac{π}{6}$)+3的图象并求函数f(x)的单调区间;
(3)若x∈[$\frac{π}{3}$,$\frac{4π}{3}$],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线xsinα+$\frac{\sqrt{3}}{3}$y+2=0的倾斜角的取值范围是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$]C.[0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π)D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC中,BC边上的高所在直线方程为x-2y+1=0,∠A的外角平分线所在直线方程为x+y+4=0,若B点的坐标为(4,-2),求A点和C点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.当X~B(6,$\frac{1}{2}}$),则使P(X=k)最大的k的值是(  )
A.2B.3C.2或3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+4,(-1≤x<0)}\\{sinπx,(x>0)}\end{array}\right.$且f(x)-ax≥-1对于定域内的任意的x恒成立,则a的取值范围是-6≤a≤0.

查看答案和解析>>

同步练习册答案