精英家教网 > 高中数学 > 题目详情
8.命题“若整数a、b中至少有一个是偶数,则ab是偶数”的逆否命题为(  )
A.若整数a,b中至多有一个偶数,则ab是偶数
B.若整数a,b都不是偶数,则ab不是偶数
C.若ab不是偶数,则整数a,b都不是偶数
D.若ab不是偶数,则整数a,b不都是偶数

分析 先否定原命题的题设做结论,再否定原命题的结论做题设,即得到原命题的逆否命题.

解答 解:命题“若整数a、b中至少有一个是偶数,则ab是偶数”的逆否命题“若ab不是偶数,则整数a,b都不是偶数“,
故选:C

点评 本题考查四种命题的相互转化,解题时要注意转化的合理性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设f(x)=lnx-ax+1.
(1)求f(x)的极值;
(2)当a>0时,恒有f(x)≤0,求a范围,在此情况下,4x-3•2x+3≤a恒成立,求x范围;
(3)证明:$\frac{{ln{2^2}}}{2^2}+\frac{{ln{3^2}}}{3^2}+…+\frac{{ln{n^2}}}{n^2}<\frac{{2{n^2}-n-1}}{2(n+1)}(n∈N,n≥2)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线的渐近线方程为5x±12y=0,则以双曲线的顶点为焦点,以双曲线的焦点为顶点的椭圆的离心率为$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=1g[(1-x)(x-3a-1)]的定义域为集合A.
(1)设函数y=x2-2x+3(0≤x≤3)的值域为集合B,若A∩B=B,求实数a的取值范围;
(2)设集合B={x|(x-a)(x-a2-1)<0),是否存在实数a,使得A=B?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立; (2)当x∈(1,2]时,f(x)=2-x;记函数g(x)=f(x)-k(x-1),若函数g(x)恰有两个零点,则实数k的取值范围是$[{\frac{4}{3},2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对任意实数x,不等式ax2+2ax-(a+2)<0恒成立,则实数a的取值范围是(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的各项均不为0,其前n项和为Sn,且满足a1=a,2Sn=anan+1
(1)求a2的值;
(2)求证{a2n}是等差数列;
(3)若a=-9,求数列{an}的通项公式an,并求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,则sinα=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,cos(α+$\frac{π}{3}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.指数函数f(x)=(2-a)x是单调函数,则a的取值范围是(  )
A.(1,2)∪(-∞,1)B.(1,2)C.(-∞,1)D.(1,2)∪(-∞,1)∪(-1,1)

查看答案和解析>>

同步练习册答案