精英家教网 > 高中数学 > 题目详情
17.已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,则sinα=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,cos(α+$\frac{π}{3}$)=-$\frac{1}{3}$.

分析 利用三角函数的平方关系得到cos(α-$\frac{π}{6}$)的值,然后将α转化为α=(α-$\frac{π}{6}$)+$\frac{π}{6}$的形式,进而根据两角差的正弦函数公式,特殊角的三角函数值即可化简求值.

解答 解:∵α∈($\frac{π}{6}$,$\frac{π}{2}$),
∴cos(α-$\frac{π}{6}$)=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$,
∴sinα=sin[(α-$\frac{π}{6}$)+$\frac{π}{6}$]=sin(α-$\frac{π}{6}$)cos$\frac{π}{6}$+cos(α-$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$+$\frac{2\sqrt{2}}{3}$×$\frac{1}{2}$=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,
cos(α+$\frac{π}{3}$)=cos[(α-$\frac{π}{6}$)+$\frac{π}{2}$]=-sin(α-$\frac{π}{6}$)=-$\frac{1}{3}$.
故答案是:$\frac{\sqrt{3}+2\sqrt{2}}{6}$;-$\frac{1}{3}$.

点评 本题主要考查了同角三角函数基本关系式,两角差的正弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合A=|x|x2-4≤0,x∈Z,B=|x|x<|1-i|,i是虚数单位,则A∩B=(  )
A.{-2,-1,0,1}B.{-1,0,1,2}C.{-2,-1,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题“若整数a、b中至少有一个是偶数,则ab是偶数”的逆否命题为(  )
A.若整数a,b中至多有一个偶数,则ab是偶数
B.若整数a,b都不是偶数,则ab不是偶数
C.若ab不是偶数,则整数a,b都不是偶数
D.若ab不是偶数,则整数a,b不都是偶数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线xsinα+$\frac{\sqrt{3}}{3}$y+2=0的倾斜角的取值范围是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$]C.[0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π)D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.△ABC中,BC边上的高所在直线方程为x-2y+1=0,∠A的外角平分线所在直线方程为x+y+4=0,若B点的坐标为(4,-2),求A点和C点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且满足2an-1=Sn
(1)求数列{an}的通项公式;
(2)对任意n,k∈N*,有λ2+k2-$\frac{λn}{{a}_{n}}$-10k+$\frac{97}{4}$>0,求正数λ的取值范围;
(3)设bn=an-(-1)n,记Tn=$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$,求证:T2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.当X~B(6,$\frac{1}{2}}$),则使P(X=k)最大的k的值是(  )
A.2B.3C.2或3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等差数列{an}中,Sn为其前n项和,已知a2=2,S5=15,数列{bn},b1=1,对任意n∈N+满足bn+1=2bn+1.
(Ⅰ)数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{a_n}{{{b_n}+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.首项为24的等差数列,从第10项起开始为负数,则公差的取值范围是(  )
A.d>-$\frac{8}{3}$B.d<-3C.-3<d≤-$\frac{8}{3}$D.-3≤d<-$\frac{8}{3}$

查看答案和解析>>

同步练习册答案