精英家教网 > 高中数学 > 题目详情
5.直线xsinα+$\frac{\sqrt{3}}{3}$y+2=0的倾斜角的取值范围是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$]C.[0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π)D.[$\frac{π}{3}$,$\frac{2π}{3}$]

分析 设直线xsinα+$\frac{\sqrt{3}}{3}$y+2=0的倾斜角为θ,θ∈[0,π).可得tanθ=-$\sqrt{3}$sinα,即可得出.

解答 解:设直线xsinα+$\frac{\sqrt{3}}{3}$y+2=0的倾斜角为θ,θ∈[0,π).
则tanθ=$-\frac{sinα}{\frac{\sqrt{3}}{3}}$=-$\sqrt{3}$sinα∈$[-\sqrt{3},\sqrt{3}]$,
∴θ∈$[0,\frac{π}{3}]$∪$[\frac{2π}{3},π]$.
故选:C.

点评 本题考查了直线的斜率、三角函数求值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{n}$=1与双曲线$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{m}$=1有相同的焦点,则动点P(n,m)的轨迹为(  )
A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.直线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=1g[(1-x)(x-3a-1)]的定义域为集合A.
(1)设函数y=x2-2x+3(0≤x≤3)的值域为集合B,若A∩B=B,求实数a的取值范围;
(2)设集合B={x|(x-a)(x-a2-1)<0),是否存在实数a,使得A=B?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对任意实数x,不等式ax2+2ax-(a+2)<0恒成立,则实数a的取值范围是(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的各项均不为0,其前n项和为Sn,且满足a1=a,2Sn=anan+1
(1)求a2的值;
(2)求证{a2n}是等差数列;
(3)若a=-9,求数列{an}的通项公式an,并求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求经过直线l1:2x-y-3=0与l2:3x+y-1=0的交点且与直线x-8y+2=0垂直的直线方程;
 (2)已知点A(1,-2)和B(3,4)到经过点P(2,3)的直线距离相等,求该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知α∈($\frac{π}{6}$,$\frac{π}{2}$),且sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,则sinα=$\frac{\sqrt{3}+2\sqrt{2}}{6}$,cos(α+$\frac{π}{3}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知Sn是等差数列{an}的前n项和,bn=$\frac{S_n}{n}$,n∈N*
(1)求证:数列{bn}是等差数列;
(2)若S7=7,S15=75,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设p:x<-3或x>1,q:x<-2或x>1,则¬p是¬q的必要不充分条件.

查看答案和解析>>

同步练习册答案