精英家教网 > 高中数学 > 题目详情
14.已知Sn是等差数列{an}的前n项和,bn=$\frac{S_n}{n}$,n∈N*
(1)求证:数列{bn}是等差数列;
(2)若S7=7,S15=75,求数列{bn}的通项公式.

分析 (1)利用等比数列的求和公式bn,再利用等差数列的定义即可证明.
(2)利用等差数列的通项公式与求和公式即可得出.

解答 (1)证明:设等差数列{an}的公差为d,Sn=na1+$\frac{n(n-1)}{2}$d,∴bn=$\frac{S_n}{n}$=a1+$\frac{n-1}{2}$d,
∴bn+1-bn=a1+$\frac{n}{2}$d-a1-$\frac{n-1}{2}$d=$\frac{1}{2}$d为常数,
∴数列{bn}是等差数列,首项为a1,公差为$\frac{1}{2}d$.
(2)解:设等差数列{an}的公差为d,
∵S7=7,S15=75,
∴$\left\{{\begin{array}{l}{7{a_1}+\frac{7×6}{2}d=7}\\{15{a_1}+\frac{15×14}{2}d=75}\end{array}}\right.$,解得a1=-2,d=1.
∴${b_n}=-2+\frac{1}{2}({n-1})=\frac{n-5}{2}$.

点评 本题考查了等差数列的定义通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π),则cos(α+$\frac{π}{4}$)=$-\frac{7\sqrt{2}}{5}$; tan2α=$\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线xsinα+$\frac{\sqrt{3}}{3}$y+2=0的倾斜角的取值范围是(  )
A.[0,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$]C.[0,$\frac{π}{3}$]∪[$\frac{2π}{3}$,π)D.[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且满足2an-1=Sn
(1)求数列{an}的通项公式;
(2)对任意n,k∈N*,有λ2+k2-$\frac{λn}{{a}_{n}}$-10k+$\frac{97}{4}$>0,求正数λ的取值范围;
(3)设bn=an-(-1)n,记Tn=$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$,求证:T2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.当X~B(6,$\frac{1}{2}}$),则使P(X=k)最大的k的值是(  )
A.2B.3C.2或3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行图中的程序,如果输出的结果是9,那么输入的只可能是(  )
A.9B.3C.±3或者-9D.3或者-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.等差数列{an}中,Sn为其前n项和,已知a2=2,S5=15,数列{bn},b1=1,对任意n∈N+满足bn+1=2bn+1.
(Ⅰ)数列{an}和{bn}的通项公式;
(Ⅱ)设cn=$\frac{a_n}{{{b_n}+1}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求解下列问题:
(1)求函数f(x)=$\frac{{{{({x-2})}^0}}}{{\sqrt{x+1}}}$的定义域;
(2)求函数f(x)=2x-$\sqrt{x-1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\sqrt{x}$的定义域是(  )
A.RB.{x|x≥0}C.{x|x>0}D.{x|x<0}

查看答案和解析>>

同步练习册答案