| A. | 2 | B. | 3 | C. | 2或3 | D. | 4 |
分析 求使P(X=k)取最大值的k的值可通过比较P(X=k)和P(X=k+1)的大小得到.可利用做差或做商法比较大小.
解答 解:$\frac{P(X=k+1)}{P(X=k)}$=$\frac{{C}_{6}^{k+1}•(\frac{1}{2})^{6}}{{C}_{6}^{k}•(\frac{1}{2})^{6}}$=$\frac{6-k}{k+1}$≥1,得k≤2.5.
所以当k=2时,P(X=2)=$\frac{15}{64}$,
当k=3时,P(X=3)=$\frac{20}{64}$,
从而X=3时,P(X=k)取得最大值.
故选:B.
点评 本题考查二项分布中的概率问题和比较大小的理论,综合性较强,计算易出错.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 第1行 | 1 |
| 第2行 | 2 4 8 |
| 第3行 | 16 32 64 128 256 |
| … | … |
| A. | 229 | B. | 230 | C. | 231 | D. | 232 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2)∪(-∞,1) | B. | (1,2) | C. | (-∞,1) | D. | (1,2)∪(-∞,1)∪(-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,x02>lnx0 | B. | ?x∈R,x2≤lnx | C. | ?x0∈R,x02≤lnx0 | D. | ?x∈R,x2<lnx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com