精英家教网 > 高中数学 > 题目详情
已知数列{xn}满足x2=
1
2
x1,xn=
1
2
(xn-1+xn-2)(n=3,4,5,…),若
lim
n→∞
xn=2
,则x1=
 
分析:要求极限,先求通项,而条件只是一个递推关系且复杂,故宜采用归纳法猜测通项.并注意无穷递缩等比数列的极限
解答:解:∵x2=
1
2
x1,且xn=
1
2
(xn-1+xn-2)
令n=3,
x3=
1
2
(x2+x1)=
3
4
x1
,令n=4,
x4=
1
2
(x2+x3)  =
5
8
x1

x2-x1=-
1
2
x1x3-x2=
1
4
x1x4-x3=-
1
8
x1
,…,xnxn-1 =(-
1
2
)
n-1

于是xn=x1+(x2-x1)+…+(xn-xn-1)=x1+
-
1
2
x1[1-(-
1
2
)
n-2
]
1+
1
2
 

lim
n→∞
xn=x1-
1
3
x1=2
,x1=3.
故答案为3.
点评:求出前几项后,观察数列的特征,一般是看差和商,采用叠加或累乘法.考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知数列{xn}满足xn+1=xn-xn-1(n≥2),x1=a,x2=b,Sn=x1+x2+…+xn,则下面正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,如果存在非零常数T,使得an+T=an对于任意的非零自然数n均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期.已知数列{xn}满足xn+1=|xn-xn-1|(n≥2),如果x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期为3时,求该数列前2009项和是
1339+a
1339+a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足:x1=1且xn+1=
xn+4
xn+1
,n∈N*

(1)计算x2,x3,x4的值;
(2)试比较xn与2的大小关系;
(3)设an=|xn-2|,Sn为数列{an}前n项和,求证:当n≥2时,Sn≤2-
2
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足:x1∈(0,1),xn+1=
xn(
x
2
n
+3)
3
x
2
n
+1
(n∈N*
).
(1)证明:对任意的n∈N*,恒有xn∈(0,1);
(2)对于n∈N*,判断xn与xn+1的大小关系,并证明你的结论.

查看答案和解析>>

同步练习册答案