精英家教网 > 高中数学 > 题目详情
对于函数f(x)=mx-
x2+2x+n
(x∈[-2,+∞)),若存在闭区间[a,b]⊆[-2,+∞)(a<b),使得对任意x∈[a,b],恒有f(x)=c(c为实常数),则实数|mn|的值为
1
1
分析:f(x)=c,即mx-
x2+2x+n
=c,两边平方整理为关于x的二次方程,由f(x)=c恒成立可得方程组,解出即可.
解答:解:f(x)=c,即mx-
x2+2x+n
=c,
所以(mx-c)2=(
x2+2x+n
)2
,整理得(m2-1)x2-(2mc+2)x+c2-n=0,
因为对任意x∈[a,b],恒有f(x)=c,
所以
m2-1=0
2mc+2=0
c2-n=0
,解得
m=1
c=-1
n=1
m=-1
c=1
n=1

故|mn|=1,
故答案为:1.
点评:本题考查函数单调性,考查学生分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若在其定义域内存在两个实数a,b(a<b),使得当x∈[a,b]时,f(x)的值域是[a,b],则称函数f(x)为“M函数”.给出下列四个函数:
①f(x)=x+1     ②f(x)=-x2+1
③f(x)=2x-2    ④f(x)=
x
-
1
8

其中所有“M函数”的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),在使f(x)≤M成立的所有常数M中,我们把M的最小值称为函数f(x)的“上确界”则函数f(x)=
(x+1)2
x2+1
的上确界为(  )
A、
1
4
B、
1
2
C、2
D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)=ln
1+x1-x

(1)求f(x)的定义域;判断f(x)的奇偶性及单调性并给予证明;
(2)对于函数f(x),当x∈(-1,1)时,f(1-m)+f(1-m2)<0.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界,就称其为函数f(x)的上确界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
g(x)=
1-m•2x
1+m•2x

(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,求函数g(x)在[0,1]上的上确界T(m).

查看答案和解析>>

同步练习册答案