精英家教网 > 高中数学 > 题目详情
在正四面体P-ABC中,M为ABC内(含边界)一动点,且到三个侧面PAB,PBC,PCA的距离成等差数列,则点M的轨迹是(  )
A.一条线段B.椭圆的一部分
C.双曲线的一部分D.抛物线的一部分
A
设M到三个侧面PAB,PBC,PCA的距离分别为.正四面体P-ABC的高为h,底面面积为s,则。又
所以点M应该在过ABC的中心平行于BC的线段上。 故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在平面直角坐标系中,已知点P是动点,且三角形的三边所在直线的斜率满足
(Ⅰ)求点P的轨迹的方程;
(Ⅱ)若Q是轨迹上异于点的一个点,且,直线交于点M,试探
究:点M的横坐标是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线,点关于轴的对称点为,直线过点交抛物线于两点.
(1)证明:直线的斜率互为相反数; 
(2)求面积的最小值;
(3)当点的坐标为.根据(1)(2)推测并回答下列问题(不必说明理由):①直线的斜率是否互为相反数? ②面积的最小值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆内有圆,如果圆的切线与椭圆交A、B两点,且满足(其中为坐标原点).
(1)求证:为定值;
(2)若达到最小值,求此时的椭圆方程;
(3)在满足条件(2)的椭圆上是否存在点P,使得从P向圆所引的两条切线互相垂直,如果存在,求出点的坐标,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线的焦点为定点,则焦点坐标是       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,,点满足,记点的轨迹为,过点作直线与轨迹交于两点,过作直线的垂线,垂足分别为
(1)求轨迹的方程;
(2)设点,求证:当取最小值时,的面积为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知直线经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于轴上方的动点,直线AP,BP与直线分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在上变化时,讨论S的大小与Q点的个数之间的关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直角坐标平面内点,一曲线经过点,且
(1)求曲线的方程;
(2)设,若,求点的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若圆与双曲线的渐近线相切,则双曲线的离心率是      .

查看答案和解析>>

同步练习册答案