精英家教网 > 高中数学 > 题目详情
a
b
是两个不共线的向量,其夹角为θ(θ≠90°),若函数f(x)=(x
a
+
b
)•(
a
-x
b
)
在(0,+∞)上有最大值,则(  )
分析:化简f(x)=(x
a
+
b
)•(
a
-x
b
)
是一元二次函数,根据二次函数的图象和性质,当函数有最大值需要开口向下对称轴在y轴右侧.
解答:解:∵f(x)=(x
a
+
b
)•(
a
-x
b
)
=-
a
b
x2+(
a
2
-
b
2
)x+
a
b

若函数f(x)在(0,+∞)上有最大值,
则二次函数f(x)=-
a
b
x2+(
a
2
-
b
2
)x+
a
b
的图象的开口向下,且对称轴在y轴右侧,
-
a
b
<0,且
a
2
-
b
2
>0
∴θ为锐角,且|
a
|>|
b
|

故选D.
点评:本题考查向量的运算和二次函数取最值的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(易线性表示)设
a
b
是两个不共线的非零向量,若向量k
a
+2
b
与8
a
+k
b
的方向相反,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是两个不共线向量,
AB
=2
a
+p
b
BC
=
a
+
b
CD
=
a
-2
b
,若A、B、D三点共线,则实数P的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是两个不共线的非零向量 (t∈R)
(1)记
OA
=
a
OB
=t
b
OC
=
1
3
(
a
+
b
)
,那么当实数t为何值时,A、B、C三点共线?
(2)若|
a
|=|
b
|=1且
a
b
夹角为120°
,那么实数x为何值时|
a
-x
b
|
的值最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是两个不共线的向量,且向量
a
b
-(
b
-2
a
)
共线,则λ=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是两个不共线向量,且向量
a
+t
b
与(
b
-2
a
)共线,则t=(  )

查看答案和解析>>

同步练习册答案