精英家教网 > 高中数学 > 题目详情

如图,已知△ABC的顶点坐标依次为A(1,0),B(5,8),C(7,-4),在边AB上有一点P,其横坐标为4,在AC上求一点Q,使线段PQ把△ABC分成面积相等的两部分.

解:设P分的比为λ1,由A(1,0)和B(5,8),点P的横坐标为4
∴4=,解得λ1=3,
=3,=
又∵==
=,即=2.
设λ2=,则λ2=2,
∵A(1,0),C(7,-4),∴xQ==5,yQ==-
∴Q(5,-).
分析:根据点A、B、P的横坐标求出P分的比值,进而求出的比值,由△APQ和△ABC的面积比和面积公式求出的比值,利用定比分点公式求出点Q的坐标.
点评:本题主要考查了线段定比分点公式的应用,即由点的坐标求出点分向量的比值,再根据面积公式求出对应向量的比值,最后求出分点的坐标.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC的面积为14,D、E分别为边AB、BC上的点,且AD:DB=BE:EC=2:1,AE与CD交于P.设存在λ和μ使
AP
AE
PD
CD
AB
=
a
BC
=
b

(1)求λ及μ;
(2)用
a
b
表示
BP

(3)求△PAC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC的顶点坐标依次为A(1,0),B(5,8),C(7,-4),在边AB上有一点P,其横坐标为4,在AC上求一点Q,使线段PQ把△ABC分成面积相等的两部分.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC的顶点为A(2,4),B(0,-2),C(-2,3),求:
(Ⅰ)AB边所在直线的方程;
(Ⅱ)AB边上的高线CH所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC的外角∠EAC的平分线与△ABC的外接圆交于点D,以CD为直径的圆分别交BC,CA于点P、Q,求证:线段PQ平分△ABC的周长.

查看答案和解析>>

科目:高中数学 来源:2010年广东省高二上学期第一次段考理科数学卷 题型:填空题

如图,已知△ABC的平面直观图是边长为2的正三角形,则原△ABC的面积为__________.

 

查看答案和解析>>

同步练习册答案