精英家教网 > 高中数学 > 题目详情

在等比数列{an}中,公比q>1,且满足a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2数学公式,且数列{bn}的前n的和为Sn,求数列{数学公式}的前n项的和Tn

解:(1)∵a2+a3+a4=28,∴a1q+a1q2+a1q3=28①;又a3+2是a2、a4的等差中项得到2(a1q2+2)=a1q+a1q3②.
由①得:a1q(1+q+q2)=28③,由②得:a1q2=8,a1q+a1q3=20即a1q(1+q2)=20④
③÷④得
∴2q2-5q+2=0
∴q=2或q=
∵q>1,∴q=2
∴数列{an}的通项公式an=a3qn-3=2n
(2)∵an=2n,∴bn=log2=n+5,∴b1=6
∴数列{bn}是以6为首项,1为公差的等差数列,
∴Sn=
=
∴数列{}是以6为首项,为公差的等差数列,
∴Tn==
分析:(1)利用a2+a3+a4=28,a3+2是a2与a4的等差中项,建立方程,求出数列的公比,即可求数列{an}的通项公式;
(2)确定数列{bn}的通项及前n的和,求得数列{}的通项,即可求和.
点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案