精英家教网 > 高中数学 > 题目详情

下图展示了一个由区间(其中为一正实数)到实数集R上的映射过程:区间中的实数对应线段上的点,如图1;将线段围成一个离心率为的椭圆,使两端点恰好重合于椭圆的一个短轴端点,如图2 ;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在轴上,已知此时点的坐标为,如图3,在图形变化过程中,图1中线段的长度对应于图3中的椭圆弧ADM的长度.图3中直线与直线交于点,则与实数对应的实数就是,记作,

现给出下列5个命题

;   ②函数是奇函数;③函数上单调递增;   ④.函数的图象关于点对称;⑤函数时AM过椭圆的右焦点.其中所有的真命题是:    (   )

A.①③⑤          B.②③④                       C.②③⑤             D.③④⑤

 

【答案】

D

【解析】

试题分析:本题可用排除法,由可知,点M位于线段AB的中点,则在图3中位于椭圆与y轴负半轴的交点,结合图像可知,故①不对;由可知函数的定义域不关于原点对称,故函数是非奇非偶函数,②不对; 在图3中点M在椭圆上逆时针移动时,点N在直线上自左向右移动值增大,故知③正确;点N关于轴对称可知④正确;若时,由点的坐标为可得,离心率为,可知椭圆焦点坐标为,,所以,所以AM过椭圆的右焦点F,故⑤正确.

考点:新定义的理解,奇偶函数的判别.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3,图3中直线AM与x轴交于点N(n,0)则m的象就是n,记作f(m)=n.
则下列说法中正确命题的序号是
 
.(填出所有正确命题的序号)
f(
1
2
)=0
; ②f(x)是偶函数;  ③f(x)在定义域上单调递增;
④f(x)的图象关于点(
1
2
,0)
对称.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交与点N(n,0),则m的象就是n,记作f(m)=n
精英家教网
下列说法中正确的命题的序号是
 
(填出所有正确命题的序号).
f(
1
4
)=1

②f(x)是奇函数;
③f(x)在定义域上单调递增;
④f(x)的图象关于点(
1
2
,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

下图展示了一个由区间(0,4)到实数集R的映射过程:区间(0,4)中的实数m对应数轴上的点M(如图1),将线段AB围成一个正方形,使两端点A,B恰好重合(如图2),再将这个正方形放在平面直角坐标系中,使其中两个顶点在y轴上,点A的坐标为(0,4)(如图3),若图3中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.
现给出以下命题:
①f(2)=0
②f(x)的图象关于点(2,0)对称;
③f(x)在区间(3,4)上为常数函数;
④f(x)为偶函数.
其中正确的命题是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

下图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A、B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.下列说法:①f(
1
4
)=1
;②f(x)是奇函数; ③f(x)在定义域上单调函数; ④f(x)的图象关于点(
1
2
,0)
对称.其中正确命题的序号是
③④
③④
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省福州市高三第五次质量检测文科数学 题型:填空题

下图展示了一个由区间到实数集R的映射过程:区间中的实数m对应数轴上的点M,如图①;将线段围成一个圆,使两端点AB恰好重合,如图②;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为,在图形变化过程中,图①中线段AM的长度对应于图③中的弧ADM的长度,如图③.图③中直线x轴交于点,则m的象就是n,记作

给出下列命题:①;②是偶函数;③在定义域上单调递增;④的图象关于点对称,则所有真命题的序号是_______.(填出所有真命题的序号)

 

查看答案和解析>>

同步练习册答案