精英家教网 > 高中数学 > 题目详情
已知是椭圆的两个焦点,是椭圆上的点,且
(1)求的周长;
(2)求点的坐标.
解:椭圆中,长半轴,焦距
(1)根据椭圆定义,
所以,的周长为
(2)设点坐标为
得,



,则
∴点坐标为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)求过点且与椭圆有相同焦点的椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点重合,则该椭圆的离心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的上顶点为,右焦点为,直线与圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若不过点的动直线与椭圆相交于两点,且求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
椭圆的离心率为分别是左、右焦点,过F1的直线与圆相切,且与椭圆E交于A、B两点。
(1)当时,求椭圆E的方程;
(2)求弦AB中点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知分别是椭圆的左、右 焦点,已知点 满足,且。设是上半椭圆上且满足的两点。
(1)求此椭圆的方程;
(2)若,求直线AB的斜率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在圆上任取一点,过点轴的垂线段为垂足.当点在圆上运动时,线段的中点形成轨迹
(1)求轨迹的方程;
(2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心是坐标原点,焦点在坐标轴上,且椭圆过点三点.
(1)求椭圆的方程;
(2)若点为椭圆上不同于的任意一点,,求内切圆的面积的最大值,并指出其内切圆圆心的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)设分别是椭圆的左、右焦点,是该椭圆上一个动点,且
、求椭圆的方程;
、求出以点为中点的弦所在的直线方程。

查看答案和解析>>

同步练习册答案