精英家教网 > 高中数学 > 题目详情
(12分)已知分别是椭圆的左、右 焦点,已知点 满足,且。设是上半椭圆上且满足的两点。
(1)求此椭圆的方程;
(2)若,求直线AB的斜率。
解:(1)由于,
,解得,
∴椭圆的方程是……………………………………………5分
(2)∵,∴三点共线,
,设直线的方程为,
消去得:
,解得……………………………….7分
,由韦达定理得①,
又由得:,∴②.
将②式代入①式得:,
消去得:
解得………………………………………………………..12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的两个焦点,是椭圆上的点,且
(1)求的周长;
(2)求点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在平面直角坐标系中,的两个顶点的坐标分别为,平面内两点同时满足一下条件:①;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中的轨迹交于两点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆与一等轴双曲线相交,是其中一个交点,并且双曲线的顶点是该椭圆的焦点,双曲线的焦点是椭圆的顶点的周长为.设为该双曲线上异于顶点的任一点,直线与椭圆的交点分别为.

(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线的斜率分别为,证明
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原点的直线交椭圆两点,线段的中点为,射线交椭圆于点,交直线于点.
(Ⅰ)求的最小值;
(Ⅱ)若?,(i)求证:直线过定点;
(ii)试问点能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P是椭圆C:上的动点,F1F2分别为左、右焦点,O为坐标原点,则的取值范围是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分
已知定点,B是圆(C为圆心)上的动点,AB的垂直平分线与BC交于点E。
(1)求动点E的轨迹方程;
(2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:OPQ面积的最大值及此时直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(5,0)和⊙B:,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q,则点Q(x,y)所满足的轨迹方程为  ( ▲ )
A.B.C.D.

查看答案和解析>>

同步练习册答案