精英家教网 > 高中数学 > 题目详情
(本小题满分12分
已知定点,B是圆(C为圆心)上的动点,AB的垂直平分线与BC交于点E。
(1)求动点E的轨迹方程;
(2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:OPQ面积的最大值及此时直线的方程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点是椭圆一点,离心率是椭圆的两
个焦点.
(1)求椭圆的面积;
(2)求的面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知分别是椭圆的左、右 焦点,已知点 满足,且。设是上半椭圆上且满足的两点。
(1)求此椭圆的方程;
(2)若,求直线AB的斜率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆 1(m>0,n>0)的一个焦点与抛物线x2=4y的焦点相同,离心率为:则此椭圆的方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的左右焦点分别为,离心率为,两焦点与上下顶点形成的菱形面积为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆交于A, B两点,四边形为平行四边形,为坐标原点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心是坐标原点,焦点在坐标轴上,且椭圆过点三点.
(1)求椭圆的方程;
(2)若点为椭圆上不同于的任意一点,,求内切圆的面积的最大值,并指出其内切圆圆心的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)
设椭圆
已知
(Ⅰ) 求椭圆E的方程;
(Ⅱ)已知过点M(1,0)的直线交椭圆EC,D两点,若存在动点N,使得直线NC,NM,ND的斜率依次成等差数列,试确定点N的轨迹方程.

查看答案和解析>>

同步练习册答案