精英家教网 > 高中数学 > 题目详情
(12分)设分别是椭圆的左、右焦点,是该椭圆上一个动点,且
、求椭圆的方程;
、求出以点为中点的弦所在的直线方程。
(1)    (2)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆C的中心在圆点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为(I)求椭圆C的方程;(II)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆的两个焦点,是椭圆上的点,且
(1)求的周长;
(2)求点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的焦点分别为,直线轴于点,且

(1)试求椭圆的方程;
(2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 (本小题满分12分)
椭圆的离心率,过右焦点的直线与椭圆相交
AB两点,当直线的斜率为1时,坐标原点到直线的距离为
⑴求椭圆C的方程;
⑵椭圆C上是否存在点,使得当直线绕点转到某一位置时,有
立?若存在,求出所有满足条件的点的坐标及对应的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在平面直角坐标系中,的两个顶点的坐标分别为,平面内两点同时满足一下条件:①;②;③
(1)求的顶点的轨迹方程;
(2)过点的直线与(1)中的轨迹交于两点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左、右焦点分别为,直线与椭圆相交于两点,为坐标原点,以为直径的圆恰好过,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(5,0)和⊙B:,P是⊙B上的动点,直线BP与线段AP的垂直平分线交于点Q,则点Q(x,y)所满足的轨迹方程为  ( ▲ )
A.B.C.D.

查看答案和解析>>

同步练习册答案