精英家教网 > 高中数学 > 题目详情
椭圆的左、右焦点分别为,直线与椭圆相交于两点,为坐标原点,以为直径的圆恰好过,求直线的方程.
解:(1)


∴所求直线方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的上顶点为,右焦点为,直线与圆相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)若不过点的动直线与椭圆相交于两点,且求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程=1表示焦点在y轴上的椭圆,则m的取值范围是
A.-16<m<25B.-16<m<C.<m<25D.m>

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的左右焦点分别为,离心率为,两焦点与上下顶点形成的菱形面积为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线与椭圆交于A, B两点,四边形为平行四边形,为坐标原点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在圆上任取一点,过点轴的垂线段为垂足.当点在圆上运动时,线段的中点形成轨迹
(1)求轨迹的方程;
(2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心是坐标原点,焦点在坐标轴上,且椭圆过点三点.
(1)求椭圆的方程;
(2)若点为椭圆上不同于的任意一点,,求内切圆的面积的最大值,并指出其内切圆圆心的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)设分别是椭圆的左、右焦点,是该椭圆上一个动点,且
、求椭圆的方程;
、求出以点为中点的弦所在的直线方程。

查看答案和解析>>

同步练习册答案