精英家教网 > 高中数学 > 题目详情
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3.
故椭圆方程为=1.
(2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2),
由|F2A|、|F2B|、|F2C|成等差数列,得
(-x1)+(-x2)=2×,由此得出:x1+x2=8.
设弦AC的中点为P(x0,y0),则x0==4.
(3)解法一:由A(x1,y1),C(x2,y2)在椭圆上.



 
                 

①-②得9(x12-x22)+25(y12-y22)=0,
即9×=0(x1≠x2)
 (k≠0)代入上式,
得9×4+25y0(-)=0
(k≠0)
即k=y0(当k=0时也成立).
由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,所以m=y0-4k=y0y0=-y0.
由点P(4,y0)在线段BB′(B′与B关于x轴对称)的内部,
得-<y0,所以-<m<.
解法二:因为弦AC的中点为P(4,y0),所以直线AC的方程为
y-y0=-(x-4)(k≠0)                         ③
将③代入椭圆方程=1,得
(9k2+25)x2-50(ky0+4)x+25(ky0+4)2-25×9k2=0
所以x1+x2==8,解得k=y0.(当k=0时也成立)
(以下同解法一).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆的一个焦点是,且离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设经过点的直线交椭圆两点,线段的垂直平分线交轴于点
,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)
一束光线从点出发,经过直线上的一点D反射后,经过点.
⑴求以A,B为焦点且经过点D的椭圆C的方程;
⑵过点作直线交椭圆C于P、Q两点,以AP、AQ为邻边作平行四边形APRQ,求对角线AR长度的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的右焦点为,右准线为,点,线段于点,若,则=(  )
a.                b. 2                   C.                 D. 3        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结交椭圆
于另一点,证明:直线x轴相交于定点
(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值
范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆C的中心在圆点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为(I)求椭圆C的方程;(II)设点Q的坐标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:焦点在轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C:分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P.

⑴求椭圆C及抛物线C1、C2的方程;
⑵若动直线与直线OP垂直,且与椭圆C交于不同两点M、N,已知点Q(,0),求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的左、右焦点分别为,直线与椭圆相交于两点,为坐标原点,以为直径的圆恰好过,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆以点P(4,2)为中点的弦的方程是_________________ 

查看答案和解析>>

同步练习册答案