精英家教网 > 高中数学 > 题目详情
已知椭圆的右焦点为,右准线为,点,线段于点,若,则=(  )
a.                b. 2                   C.                 D. 3        
A
椭圆的右焦点,右准线。设点坐标为,点坐标为。因为,所以点在之间且,从而有,可得。将代入椭圆方程可得,解得。所以,则,故选A
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知过点的直线与椭圆相交于不同的两点A、B,点M是弦AB的中点, 则的最小值为 (   )
A.             B.               C.  1             D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C:的左、右焦点为,其上顶点为.已知是边长为的正三角形.
(Ⅰ)求椭圆C的方程; 
(Ⅱ)过点任作一动直线交椭圆C于两点,记若在线段上取一点使得,试判断当直线运动时,点是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的长半轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)过椭圆右焦点的直线交椭圆于两点,若,求直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)求过点且与椭圆有相同焦点的椭圆方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上关于原点对称的两点,是椭圆上任意一点且直线的斜率分别为,则的最小值为,则椭圆的离心率为(  ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心是坐标原点,焦点在坐标轴上,且椭圆过点三点.
(1)求椭圆的方程;
(2)若点为椭圆上不同于的任意一点,,求内切圆的面积的最大值,并指出其内切圆圆心的坐标.

查看答案和解析>>

同步练习册答案